
9. Classes
==================================

Creating the Dog Class
Each instance created from the Dog class will store a name and an age, and
we’ll give each dog the ability to sit() and roll_over():

class Dog():
 """A simple attempt to model a dog."""

 def __init__(self, name, age):
 """Initialize name and age attributes."""
 self.name = name
 self.age = age

 def sit(self):
 """Simulate a dog sitting in response to a command."""
 print(self.name.title() + " is now sitting.")
 def roll_over(self):
 """Simulate rolling over in response to a command."""
 print(self.name.title() + " rolled over!"

The __init__() method at w is a special method
Python runs automatically whenever we create a new instance based on the
Dog class.

Creating Classes in Python 2.7
When you create a class in Python 2.7, you need to make one minor change.
You include the term object in parentheses when you create a class:
class ClassName(object):
 --snip--

Making an Instance from a Class
my_dog = Dog('willie', 6)
print("My dog's name is " + my_dog.name.title() + ".")
print("My dog is " + str(my_dog.age) + " years old.")

class Car():
 """A simple attempt to represent a car."""
 def __init__(self, make, model, year):
 """Initialize attributes to describe a car."""
 self.make = make
 self.model = model
 self.year = year

 def get_descriptive_name(self):
 """Return a neatly formatted descriptive name."""
 long_name = str(self.year) + ' ' + self.make + ' ' + self.model

 return long_name.title()

my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_descriptive_name())

Inheritance
You don’t always have to start from scratch when writing a class. If the class
you’re writing is a specialized version of another class you wrote, you can
use inheritance. When one class inherits from another, it automatically takes
on all the attributes and methods of the first class.

 class ElectricCar(Car):
 """Represent aspects of a car, specific to electric vehicles."""

 def __init__(self, make, model, year):
 """Initialize attributes of the parent class."""
 super().__init__(make, model, year)

my_tesla = ElectricCar('tesla', 'model s', 2016)
print(my_tesla.get_descriptive_name())

class ElectricCar(Car):
 def __init__(self, make, model, year):
 super(ElectricCar, self).__init__(make, model, year)

Python Object & Class
 Python OOP
 Introduction to OOPs in Python

 Python is a multi-paradigm programming language. Meaning, it supports different
 programming approach.

 One of the popular approach to solve a programming problem is by creating objects.
 This is known as Object-Oriented Programming (OOP).

 An object has two characteristics:

 attributes
 behavior

 Let's take an example:

 Parrot is an object,

 name, age, color are attributes
 singing, dancing are behavior

 Inheritance
 A process of using details from a new class without modifying existing class.
 Encapsulation Hiding the private details of a class from other objects.
 Polymorphism A concept of using common operation in different ways for different data input.

 Class

 A class is a blueprint for the object.

 We can think of class as an sketch of a parrot with labels. It contains all the details about the
name, colors, size etc. Based on these descriptions, we can study about the parrot. Here, parrot is an
object.

 The example for class of parrot can be :

 class Parrot:
 pass

 Here, we use class keyword to define an empty class Parrot. From class,
 we construct instances. An instance is a specific object created from a particular class.
 Object

 An object (instance) is an instantiation of a class. When class is defined,
 only the description for the object is defined. Therefore, no memory or storage is allocated.

 The example for object of parrot class can be:

 obj = Parrot()

 Here, obj is object of class Parrot.

 class Parrot:

 # class attribute
 species = "bird"

 # instance attribute
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # instantiate the Parrot class
 blu = Parrot("Blu", 10)
 woo = Parrot("Woo", 15)

 # access the class attributes
 print("Blu is a {}".format(blu.__class__.species))
 print("Woo is also a {}".format(woo.__class__.species))

 # access the instance attributes
 print("{} is {} years old".format(blu.name, blu.age))
 print("{} is {} years old".format(woo.name, woo.age))

 class Parrot:

 # instance attributes
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # instance method
 def sing(self, song):
 return "{} sings {}".format(self.name, song)

 def dance(self):
 return "{} is now dancing".format(self.name)

 # instantiate the object
 blu = Parrot("Blu", 10)

 # call our instance methods
 print(blu.sing("'Happy'"))
 print(blu.dance())

 Python Inheritance

 Inheritance

 Inheritance is a way of creating new class for using details of existing class without
 modifying it. The newly formed class is a derived class (or child class). Similarly,
 the existing class is a base class (or parent class).

 # parent class
 class Bird:

 def __init__(self):
 print("Bird is ready")

 def whoisThis(self):
 print("Bird")

 def swim(self):
 print("Swim faster")

 # child class
 class Penguin(Bird):

 def __init__(self):
 # call super() function
 super().__init__()
 print("Penguin is ready")

 def whoisThis(self):
 print("Penguin")

 def run(self):
 print("Run faster")

 peggy = Penguin()
 peggy.whoisThis()
 peggy.swim()
 peggy.run()

 Encapsulation

 Using OOP in Python, we can restrict access to methods and variables.
 This prevent data from direct modification which is called encapsulation.
 In Python, we denote private attribute using underscore as prefix
 i.e single “ _ “ or double “ __“.

 class Computer:

 def __init__(self):
 self.__maxprice = 900

 def sell(self):
 print("Selling Price: {}".format(self.__maxprice))

 def setMaxPrice(self, price):
 self.__maxprice = price

 c = Computer()
 c.sell()

 # change the price
 c.__maxprice = 1000
 c.sell()

 # using setter function
 c.setMaxPrice(1000)
 c.sell()

 Polymorphism

 Polymorphism is an ability (in OOP) to use common interface for multiple form (data types).
 Suppose, we need to color a shape, there are multiple shape option
 (rectangle, square, circle). However we could use same method to color any shape.
 This concept is called Polymorphism.

 class Parrot:

 def fly(self):
 print("Parrot can fly")

 def swim(self):
 print("Parrot can't swim")

 class Penguin:

 def fly(self):
 print("Penguin can't fly")

 def swim(self):
 print("Penguin can swim")

 # common interface
 def flying_test(bird):
 bird.fly()

 #instantiate objects
 blu = Parrot()
 peggy = Penguin()

 # passing the object
 flying_test(blu)
 flying_test(peggy)

 class MyClass:
 "This is my second class"
 a = 10
 def func(self):
 print('Hello')

 # Output: 10
 print(MyClass.a)

 # Output: <function MyClass.func at 0x0000000003079BF8>
 print(MyClass.func)

 # Output: 'This is my second class'
 print(MyClass.__doc__)

 What is Inheritance?

 Inheritance is a powerful feature in object oriented programming.

 It refers to defining a new class with little or no modification to an existing class. The new class is
called derived (or child) class and the one from which it inherits is called the base (or parent) class.
 Python Inheritance Syntax

 class BaseClass:
 Body of base class
 class DerivedClass(BaseClass):
 Body of derived class

 Multiple Inheritance in Python

 Like C++, a class can be derived from more than one base classes in Python. This is called
multiple inheritance.

 In multiple inheritance, the features of all the base classes are inherited into the derived
class. The syntax for multiple inheritance is similar to single inheritance.
 Example

 class Base1:
 pass

 class Base2:
 pass

 class MultiDerived(Base1, Base2):
 pass

