
Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 1

© NCC Education Limited

Analysis, Design and Implementation
Topic 10:
Elements of Good Design

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:
• System measures
• Architectural Measures
• Project Measures
• Assessing Measures
• Software Component Design

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:
• Analyse and assess the quality of software
• Assess the architectural quality of an object

oriented program
• Make use of the observer data pattern to reduce

coupling

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 2

Title of Topic Topic 1 - 1.4

Introduction

• Part of the process of building a design view of a
system is improving upon what is already in place.

– Only rarely are systems developed without there
already being something in place to model them on.

• In software development, ‘improvement’ is not a
fixed quality.

– Different developers will have different opinions on what
is best.

• However, there are certain things for which we can
aim.

Title of Topic Topic 1 - 1.5

Software Quality Attributes

• There are formal taxonomies about what
constitutes good software.

– They all include broadly the same things.
• We can break these qualities into three rough

categories.
– System measures
– Architectural measures
– Project measures

Title of Topic Topic 1 - 1.6

System Measures

• System measures are those that describe and
define the system while it is running.

– Functionality
• Does it do what it’s supposed to do?

– Performance
• How efficiently does it accomplish its goals?

– Security
• How well protected are the sensitive parts of the system?

– Reliability
• How much can you rely on the software being available when

you need it?

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 3

Title of Topic Topic 1 - 1.7

System Measures

• System measures also include:
– Usability

• How easily the system can be manipulated by users, especially
those that may not be experts.

» We’ll know that in part from our paper prototypes.

– Interoperability
• How well can it work with the other systems with which it may

need to communicate?
– Correctness

• How correct is the functionality? Does it give answers that are
suitably precise?

Title of Topic Topic 1 - 1.8

Architectural Measures

• Architectural measures relate to the way the system
was designed and coded. These include:

– Maintainability
• How easily can improvements and fixes be made to the system?

– Portability
• How easily can the system be built and deployed for a platform for

which it was not originally written?
– Reusability

• How easily can elements of the system be incorporated into future
systems?

– Testability
• How easily can we test that the system does what it is supposed to

do?

Title of Topic Topic 1 - 1.9

Project Measures

• Project measures are related to the management of
the OOAD process.

– Cost
• How much did the system cost and for how much was it

costed?
– Schedule

• How long was it supposed to take and how long did it take?
– Marketability

• Is it software designed for the market-place, and if so what is it
that sets it apart from the competition?

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 4

Title of Topic Topic 1 - 1.10

Assessing Quality

• Assessing quality is sometimes a qualitative
process.

– You go by what people say.
• Sometimes it can be quantified.

– Running test cases can identify performance, reliability
and correctness.

– User testing can identify functionality and usability.
• Sometimes it is related to choices made in the

design phase.
– Portability, for example.

Title of Topic Topic 1 - 1.11

Trade-offs

• When performing the analysis, you must determine
which of these qualities are going to be
emphasised.

– This will influence how you can emphasise others.
• During the design phase, you must decide how you

are going to honour that emphasis.
– Choosing to emphasise maintainability will influence the

cost and efficiency of the system.
– Emphasising speed of development will impact on the

quality and cost.

Title of Topic Topic 1 - 1.12

Assessing System Measures

• Assessing system measures can usually only be
done once something has been implemented.

– Not all of it, just enough to give a ‘ball park’ figure for
quantifiable measures.

• Incorporating this analysis into your development
process can be valuable.

– Test driven development
– Benchmarking

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 5

Title of Topic Topic 1 - 1.13

Test Driven Development

• Regression testing is an important part of ensuring
correctness of software.

– It is estimated that for every two bugs you fix in a
program, you introduce one more.

• Test driven development can help identify new
problems as early as possible.

• Test driven development works by writing the tests
before you write the code, and automating the
running of those tests.

Title of Topic Topic 1 - 1.14

Test Driven Development

• Whenever you make a change to a piece of code, you
run all the automated tests.

– In this way, you can make sure that the functionality you are
developing does not break existing functionality.

• The process for development then is:
– Add a test
– Run your all the tests
– Write the new code
– Run the tests again
– Refactor to resolve issues.
– Repeat

Title of Topic Topic 1 - 1.15

Benchmarking

• Benchmarking allows for you to determine the
efficiency of code and then optimise accordingly.

– “Premature optimisation is the root of all evil” – Donald
Knuth

• Sometimes you can make use of industry standard
benchmarks.

– Graphics performance, for example.
• More often you will need your own bespoke

architecture for this.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 6

Title of Topic Topic 1 - 1.16

Benchmarking

• When sure you have correctly functioning code,
you can run your benchmarks.

• These fall into two categories.
– Profiling
– Performance benchmarking

• The former will show you which parts of your
system are using the most CPU.

– These are the best candidates for optimisation.
• The latter will show you the impact of performance

fixes you make.

Title of Topic Topic 1 - 1.17

Bespoke Benchmarking

class Benchmarking
{
public void testPerformance() {
DateTime start = DateTime.Now;
DateTime end;
TimeSpan duration;
int iterations = 100000;

for (int i = 0; i < iterations; i++) {
String test = "Testing!";

}

end = DateTime.Now;

duration = end.Subtract (start);

Console.Out.WriteLine ("Duration was " + duration.TotalMilliseconds);

}

}

Title of Topic Topic 1 - 1.18

Optimisation

• Once you have identified a performance issue in your
system, you can optimise it.

– Be aware of the 80/20 rule here.
• There are several standard techniques.

– Strength reduction
• Replacing slow code with faster code.

– Sub-expression elimination
• Re-use the results of calculations where possible.

– Code motion
• Move invariant code out of loops

– Re-use objects
• Don’t instantiate an object when you can re-use an existing object.

– Cache common operations

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 7

Title of Topic Topic 1 - 1.19

Architectural Measures

• Architectural measures are best assessed at the
design phase.

– The class diagram will be a useful tool for this.
• We want to aim for systems that have low

coupling and high cohesion.
– Sadly, these are mutually exclusive measures of quality.

• Coupling defines inter-dependencies between
various modules.

• Cohesion defines how tightly the methods of a
module are related.

Title of Topic Topic 1 - 1.20

Types of Coupling

• There are many different kinds of coupling, and
some are worse than others. From worst to best:

– Content coupling.
• When a module makes use of the local data of another. The

worst kind of coupling.
– Common coupling

• When two modules share the same global data store.
– Data coupling

• When modules share data via parameters
– Callback coupling

• Such as in the observer design pattern.
» We’ll talk about that later in the lecture.

Title of Topic Topic 1 - 1.21

Why is coupling bad?

• Coupling makes it hard to extract classes from their
context.

– This makes re-use difficult.
• Coupling makes it difficult to change code.

– You most likely need to change tightly coupled code as
well.

• It’s not always bad.
– If coupling is bad then surely no coupling is good?

That’s not true.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 8

Title of Topic Topic 1 - 1.22

Cohesion

• The degree to which a module fills a single role
determines its cohesion.

– As in, all the parts of the module should be well aligned to
solving a particular problem.

• Cohesion is a qualitative measure, and again can be
measured in many ways.

• High cohesion is good because it makes it easier to:
– Understand what classes do
– Reuse the classes
– Maintain the classes

Title of Topic Topic 1 - 1.23

Cohesion

• There are multiple ways to assess cohesion. From
worst to best:

– Coincidental cohesion
• No real connection between modules.

– Logical cohesion
• Modules are logically linked in what they do

– Temporal cohesion
• Modules are linked together because they tend to be executed at

the same point in a program’s lifetime.
– Communication cohesion

• Modules are linked together because they act on the same kinds of
data/

– Functional cohesion
• All modules contribute to the processing of a well defined task.

Title of Topic Topic 1 - 1.24

Fixing Architectural Problems

• First of all, you must identify what those problems
are.

– Identify classes with low cohesion
– Identify classes with high coupling

• Identify the nature of the coupling between classes.

• Hide and encapsulate information in classes.
– This will force that any coupling is of the better kinds.

• Refactor classes to improve their cohesion.
– Merge and divide where necessary.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 9

Title of Topic Topic 1 - 1.25

Fixing Architectural Problems

• When you emphasise cohesion, you will have to
sacrifice some potential coupling efficiencies.

– And vice versa.
• However, coupling is fine if it’s the right kind of

coupling and not too freely used.
– One of the reasons why design patterns are useful is

that they represent a good balance between coupling
and cohesion.

• When you identify coupling, either refactor it away
or refactor it to a less problematic form.

Title of Topic Topic 1 - 1.26

Software Component Design

• One of the ways in which you can neatly resolve
architectural issues is in treating each subsystem of
your program as a component.

– A black box which has no knowledge of how the rest of
your system works.

• Components can be collections of classes.
– They should all be linked together to process one well

defined part of the system.
• Communication via different parts of the system is

then handled via the observer design pattern.

Title of Topic Topic 1 - 1.27

Observer Design Pattern

• The Observer design pattern allows for an object to
maintain a list of other objects that are interested in
when its state changes.

• When the state changes, we then notify all of these
interested objects (observers) that a change has
been made.

• Objects are responsible for registering themselves
as observers.

– And for deregistering them when it is no longer relevant.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 10

Title of Topic Topic 1 - 1.28

Observer Example

public interface AccountExampleInterface {
void stateChanged (int current, int change);

}

public class Account {
private int amount;
List<AccountExampleInterface> myListeners;

public Account() {
myListeners = new List<AccountExampleInterface>();

}
public void addListener (AccountExampleInterface a) {

myListeners.Add (a);
}
public void removeListener (AccountExampleInterface a) {

myListeners.Remove (a);
}
public void notifyListeners (int current, int amount) {

foreach (AccountExampleInterface a in myListeners) {
a.stateChanged (current, amount);

}
}
void adjustBalance (int val) {

amount += val;
notifyListeners (amount, val);

}
}

Title of Topic Topic 1 - 1.29

Observer Example

public class InterestedParty : AccountExampleInterface {
public void stateChanged (int current, int amount) {

Console.Out.WriteLine("I was interested that the account was adjusted by " + amount);
}

}

Title of Topic Topic 1 - 1.30

Software Components

• Software components permit you to subdivide your
project.

– Each component can be optimised separately.
– Communication can be handled via loose coupling such

as the observer pattern.
• By limiting the scope of any component, greater

architectural elegance can be obtained.
– This is the key to good software design.

• High quality software is a process, not a
deliverable.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 11

Title of Topic Topic 1 - 1.31

Conclusion

• Part of our role as software developers is to create
good software.

– This involves understanding the implications of our
decisions.

• Software quality attributes involve trade-offs.
– We can’t have them all, so we must decide what we

need.
• There are various ways to assess and improve the

quality of our software.
– And we have discussed a number of these.

Topic 10 – Elements of Good Design

Any Questions?

