Topic X — Topic Title

V0.0

Analysis, Design and Implementation
Topic 8:
Design Patterns (1)

Scope and Coverage

This topic will cover:
« The need for design patterns
» The factory design pattern
» The abstract factory design pattern

Module Title

Learning Outcomes

By the end of this topic students will be able to:
» Understand the use of design patterns
« Design and use factory design patterns
« Design and use abstract factory design patterns

Visuals Handout — Page 1



Topic X — Topic Title

V0.0

Introduction

* We have spent the past few lectures discussing
primarily the analysis and design elements of
building software.

« In this lecture we are going to explore some of the
ways we can make our implementation more
effective by making use of design patterns.

« Design patterns are particular software
development techniques that can be used to
achieve design goals.

Design Patterns

« As part the design process of building a piece of
software, we encounter situations that we think will
be difficult to write in code,

— Any time you think to yourself ‘Il am not sure how this is
best done’

« Design patterns are collections of objects and
classes that are aimed at meeting a particular
design need.

— There are many dozens of well established patterns,
and we can only discuss a few of these.

Design Patterns

 Design patterns fill the role of ‘high level design’ in
object oriented programs.
« It is often difficult to develop ‘good’ object oriented solutions.
— Design patterns are a shorthand for particular collections of
objects, arranged in a particular way.
 Design patterns are battle-tested.

- A pattern only enters into common acceptance when it has
been shown to work in many situations — as such, we can be
confident that it works.

« Design patterns are generalised.

— A design pattern is to object design what an algorithm is to
lines of code.

— We need to write it with our specific context in mind.

Module Title

Visuals Handout — Page 2



Topic X — Topic Title

Representing Design Patterns

» A design pattern is a collection of (usually) several
different classes.

— It defines the interaction of these objects at a higher
level of abstraction.

— The examples we see are just examples.
* You need to implement them in the context of your own
systems.

* They are not solutions themselves.
— Just the ‘shape’ of solutions.

Module Title

Benefits of Patterns

« Part of what design patterns bring to the field of
software engineering is a common vocabulary for
design

— Shorthand solutions for certain kinds of recurring
programming problems.

¢ Design patterns are ‘best practice’, and thus allow
for portability of the ‘lessons learned’ of
experienced developers.

— They are an aid to learning.
* You get the benefit of avoiding the mistakes others have made
over the years.

Benefits of Patterns

» They fit in easily with existing modern programming
techniques.
— Design patterns complement object orientation
— They are easily expressed as UML diagrams for the
most part.
¢ Design patterns reduce the need for future large-
scale refactoring.

— They are tried and tested, and the result of successive
refactoring of their own.

V0.0

Visuals Handout — Page 3



Topic X — Topic Title

V0.0

Criticisms of Patterns

* Some of the patterns that are in common usage are
simple workarounds for missing language features.
— Some patterns are repetitions of things supported
syntactically in other languages.
« Can lead to systems that are heavily over-engineered.

- Use with care — it's tempting to put patterns in when there is
no real requirement.

* When you have a hammer...

- Patterns represent good solutions to recurring problems, but
they are no substitute for effective analysis.

» Counter-productive when building expertise.
— You learn more from failure than you do from success.

Design Patterns

« Design patterns are broken down into a number of
different categories.
— Structural
— Creational
— Behavioural
« The first of the patterns that we are going to look at
is called the factory design pattern.
— This is a creational pattern.

Creational Design Patterns

* We use creational design patterns for several
reason.

— Some situations are more complex than simple

instantiation can handle.
« Imagine for example you want to create an entirely ‘skinnable’
look and feel for an application.

— Some situations have complex consequences if objects
aren't instantiated in the right way or the right order.

— Some situations require that only one object is ever
created.

Module Title

Visuals Handout — Page 4



Topic X — Topic Title Module Title

The Factory Pattern

» The Factory is used to provide a consistent
interface to setup properly configured objects.
— You pass in some configuration details
— Out comes a properly configured object.
« At its simplest, it can be represented by a single
class containing a single static method.

— More complex factories exist, dealing with more
complex situations.

« Those are all variations on the basis structure we will discuss in
the lecture.

The Factory Design Pattern

* Imagine a class: Shape

-t
-y nt
dengthe int
hzignzint

+getii) nt
+setiivaue; ntl
Huelr () nl

et fvaus: nt)
Iactlergthf{vale: nt)
+getencth) int
+getdzignz(): int
+aetHeight{valie: inf)
+dransnape(y: Grephcs)

V0.0 Visuals Handout — Page 5



Topic X — Topic Title

The Factory Design Pattern

« Now imagine you are creating a simple drawing
package.
— User selects a shape
— User clicks on the screen
— Application draws the shape at that location.
« This can all be hard-coded directly into an
application.

— This suffers from scale and readability issues.
< The application becomes a maze of if statements and switches.

Module Title

The Factory Design Pattern

« Instead, we can use a factory to generate specific
objects, through the power of polymorphism.
— Polymorphism is key to the way a Factory works.
» The system that drives a factory is that all these
shapes have a common parent class.
— Thus, all we need is the Shape object that is
represented by specific objects.
« The objects themselves manage the complexity of
the drawing process.

The Factory Design Pattern

class ShapeFactory

public Shape getShape (String shape, int x, int y, int len, int ht, String colour) {
Shape temp = null;

if (shape.Equals ("Circle")) {
temp = new Circle (x, y, len, ht);
i

else if (shape.Equals ("Rectangle”)) {
temp = new Rectangle (x, y, len, ht);
}

else if (shape.Equals (“Face”)) {
temp = new Face (x, y, len, ht);

temp. setDrawingColor (col);
return temp;

V0.0

Visuals Handout — Page 6



Topic X — Topic Title Module Title

The Factory Design Pattern

« The Factory Pattern reduces hard-coded
complexity.
— We don't need to worry about combinatorial explosion.
» The Factory Pattern properly devolves
responsibility to individual objects.
— We don't have a draw method in our application, we
have a draw method in each specific shape.
« However, the Factory pattern by itself is limited to
certain simple contexts.
— For more complicated situations, we need more.

The Abstract Factory

» The next level of abstraction is the Abstract
Factory.
— This is a Factory for factories.
« Imagine here we have slightly more complicated
situations.
— Designing an interface that allows for different themes.
— Afile conversion application that must allow for different
versions of different formats.
— A bank that provides different kinds of accounts for their
customers.

The Abstract Factory

* We could handle these with a factory by itself.
— This introduces the same combinatorial problems that
the factory is designed to resolve.
A simple rule to remember is — coding
combinations is usually bad design.

« Bad design causes trouble later on.

— When doing anything more substantial than simple
‘proof of concept’ applications, we should always be
sure to engineer our systems properly.

V0.0 Visuals Handout — Page 7



Topic X — Topic Title

V0.0

Abstract Factory Implementation

public class AbstractFactory {
public static Factory getFactory (string look) {
Factory temp;
if (look.Equals ("windows")) {
temp = new WindowsFactory();

}

else if (look.Equals (“"linux")) {
temp = new LinuxFactory();

}

else if (look.Equals ("macintosh")) {
temp = new MacintoshFactory();

return temp;

Factory Implementation

Factory

class ShapeFactory :

{
public override Shape getShape (String shape, int x, int y, int len, int ht,
String colour)

Shape temp = null;

if (shape.Equals ("Circle")) {
temp = new Circle (x, y, len, ht);

}

else if (shape.Equals ("Rectangle")) {
temp = new Rectangle (x, y, len, ht);

else if (shape.Equals ("Face")) {
temp = new Face (x, y, len, ht);

temp. setDrawingColor (col);
return temp;

Factory Base Class

abstract class Factory {
public abstract Shape getShape (String sh,
int x, int y, int len, int ht,
String c);

Module Title

Visuals Handout — Page 8



Topic X — Topic Title

V0.0

The Consequence

Entirely new suites of shapes and styles can be
added to this system without risking combinatorial
explosion.
— The ‘operational’ code is also much tighter and more
focused.

Factory nyFactory =
Abstract Factory. get Factory ("pointilisnt);

Shape nmyShape = nyFactory. get Shape
("circle");

Using Patterns

« Patterns are best decided upon in the design
phase of development.

— During our analysis, we may encounter situations that
require the creation of large amounts of objects.

* We use the factory and/or abstract factory when we
must deal with potentially large combinations of
objects that must be created and configured.

« If we see such a requirement, we make sure to
place our design pattern in the appropriate part of
our class diagram.

Using Patterns

* Much of deciding when we should use patterns is
based on our own pattern recognition.
— We see that a particular kind of functionality is going to
be suited to a pattern of which we are aware.
« Experimenting with patterns is an important part of
building that skill.
— We have to see what patterns can do, how they do it,

and how they can be moulded to meet our own specific
needs.

Module Title

Visuals Handout — Page 9



Topic X — Topic Title

V0.0

Conclusion

« Design patterns are an important technique for
handling the implementation of complex
functionality.

— They are something like algorithms for object and class
design.

 The factory design pattern is used to handle the
creation of objects that stem from a common base.

* Abstract factories are factories for factories.

— We choose the factory we want, and use that to
generate objects.

Topic 8 — Design Patterns (1)

Any Questions?

Module Title

Visuals Handout — Page 10



