
Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 1

© NCC Education Limited

Analysis, Design and Implementation
Topic 8:
Design Patterns (1)

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:
• The need for design patterns
• The factory design pattern
• The abstract factory design pattern

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:
• Understand the use of design patterns
• Design and use factory design patterns
• Design and use abstract factory design patterns

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 2

Title of Topic Topic 1 - 1.4

Introduction

• We have spent the past few lectures discussing
primarily the analysis and design elements of
building software.

• In this lecture we are going to explore some of the
ways we can make our implementation more
effective by making use of design patterns.

• Design patterns are particular software
development techniques that can be used to
achieve design goals.

Title of Topic Topic 1 - 1.5

Design Patterns

• As part the design process of building a piece of
software, we encounter situations that we think will
be difficult to write in code,

– Any time you think to yourself ‘I am not sure how this is
best done’

• Design patterns are collections of objects and
classes that are aimed at meeting a particular
design need.

– There are many dozens of well established patterns,
and we can only discuss a few of these.

Title of Topic Topic 1 - 1.6

Design Patterns

• Design patterns fill the role of ‘high level design’ in
object oriented programs.

• It is often difficult to develop ‘good’ object oriented solutions.
– Design patterns are a shorthand for particular collections of

objects, arranged in a particular way.
• Design patterns are battle-tested.

– A pattern only enters into common acceptance when it has
been shown to work in many situations – as such, we can be
confident that it works.

• Design patterns are generalised.
– A design pattern is to object design what an algorithm is to

lines of code.
– We need to write it with our specific context in mind.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 3

Title of Topic Topic 1 - 1.7

Representing Design Patterns

• A design pattern is a collection of (usually) several
different classes.

– It defines the interaction of these objects at a higher
level of abstraction.

– The examples we see are just examples.
• You need to implement them in the context of your own

systems.

• They are not solutions themselves.
– Just the ‘shape’ of solutions.

Title of Topic Topic 1 - 1.8

Benefits of Patterns

• Part of what design patterns bring to the field of
software engineering is a common vocabulary for
design

– Shorthand solutions for certain kinds of recurring
programming problems.

• Design patterns are ‘best practice’, and thus allow
for portability of the ‘lessons learned’ of
experienced developers.

– They are an aid to learning.
• You get the benefit of avoiding the mistakes others have made

over the years.

Title of Topic Topic 1 - 1.9

Benefits of Patterns

• They fit in easily with existing modern programming
techniques.

– Design patterns complement object orientation
– They are easily expressed as UML diagrams for the

most part.
• Design patterns reduce the need for future large-

scale refactoring.
– They are tried and tested, and the result of successive

refactoring of their own.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 4

Title of Topic Topic 1 - 1.10

Criticisms of Patterns

• Some of the patterns that are in common usage are
simple workarounds for missing language features.

– Some patterns are repetitions of things supported
syntactically in other languages.

• Can lead to systems that are heavily over-engineered.
– Use with care – it’s tempting to put patterns in when there is

no real requirement.
• When you have a hammer…

– Patterns represent good solutions to recurring problems, but
they are no substitute for effective analysis.

• Counter-productive when building expertise.
– You learn more from failure than you do from success.

Title of Topic Topic 1 - 1.11

Design Patterns

• Design patterns are broken down into a number of
different categories.

– Structural
– Creational
– Behavioural

• The first of the patterns that we are going to look at
is called the factory design pattern.

– This is a creational pattern.

Title of Topic Topic 1 - 1.12

Creational Design Patterns

• We use creational design patterns for several
reason:

– Some situations are more complex than simple
instantiation can handle.

• Imagine for example you want to create an entirely ‘skinnable’
look and feel for an application.

– Some situations have complex consequences if objects
aren’t instantiated in the right way or the right order.

– Some situations require that only one object is ever
created.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 5

Title of Topic Topic 1 - 1.13

The Factory Pattern

• The Factory is used to provide a consistent
interface to setup properly configured objects.

– You pass in some configuration details
– Out comes a properly configured object.

• At its simplest, it can be represented by a single
class containing a single static method.

– More complex factories exist, dealing with more
complex situations.

• Those are all variations on the basis structure we will discuss in
the lecture.

Title of Topic Topic 1 - 1.14

The Factory Design Pattern

• Imagine a class:

Title of Topic Topic 1 - 1.15

The Factory Design Pattern

• Then imagine a simple class hierarchy:

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 6

Title of Topic Topic 1 - 1.16

The Factory Design Pattern

• Now imagine you are creating a simple drawing
package.

– User selects a shape
– User clicks on the screen
– Application draws the shape at that location.

• This can all be hard-coded directly into an
application.

– This suffers from scale and readability issues.
• The application becomes a maze of if statements and switches.

Title of Topic Topic 1 - 1.17

The Factory Design Pattern

• Instead, we can use a factory to generate specific
objects, through the power of polymorphism.

– Polymorphism is key to the way a Factory works.
• The system that drives a factory is that all these

shapes have a common parent class.
– Thus, all we need is the Shape object that is

represented by specific objects.
• The objects themselves manage the complexity of

the drawing process.

Title of Topic Topic 1 - 1.18

The Factory Design Pattern

class ShapeFactory
{
public Shape getShape (String shape, int x, int y, int len, int ht, String colour) {

Shape temp = null;

if (shape.Equals ("Circle")) {
temp = new Circle (x, y, len, ht);

}

else if (shape.Equals ("Rectangle")) {
temp = new Rectangle (x, y, len, ht);

}

else if (shape.Equals ("Face")) {
temp = new Face (x, y, len, ht);

}

temp.setDrawingColor (col);
return temp;

}
}

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 7

Title of Topic Topic 1 - 1.19

The Factory Design Pattern

• The Factory Pattern reduces hard-coded
complexity.

– We don’t need to worry about combinatorial explosion.
• The Factory Pattern properly devolves

responsibility to individual objects.
– We don’t have a draw method in our application, we

have a draw method in each specific shape.
• However, the Factory pattern by itself is limited to

certain simple contexts.
– For more complicated situations, we need more.

Title of Topic Topic 1 - 1.20

The Abstract Factory

• The next level of abstraction is the Abstract
Factory.

– This is a Factory for factories.
• Imagine here we have slightly more complicated

situations.
– Designing an interface that allows for different themes.
– A file conversion application that must allow for different

versions of different formats.
– A bank that provides different kinds of accounts for their

customers.

Title of Topic Topic 1 - 1.21

The Abstract Factory

• We could handle these with a factory by itself.
– This introduces the same combinatorial problems that

the factory is designed to resolve.
• A simple rule to remember is – coding

combinations is usually bad design.
• Bad design causes trouble later on.

– When doing anything more substantial than simple
‘proof of concept’ applications, we should always be
sure to engineer our systems properly.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 8

Title of Topic Topic 1 - 1.22

Abstract Factory Implementation

public class AbstractFactory {
public static Factory getFactory (string look) {

Factory temp;
if (look.Equals ("windows")) {

temp = new WindowsFactory();
}

else if (look.Equals ("linux")) {
temp = new LinuxFactory();

}

else if (look.Equals ("macintosh")) {
temp = new MacintoshFactory();

}
return temp;

}
}

Title of Topic Topic 1 - 1.23

Factory Implementation
class ShapeFactory : Factory

{
public override Shape getShape (String shape, int x, int y, int len, int ht,

String colour) {

Shape temp = null;

if (shape.Equals ("Circle")) {
temp = new Circle (x, y, len, ht);

}

else if (shape.Equals ("Rectangle")) {
temp = new Rectangle (x, y, len, ht);

}

else if (shape.Equals ("Face")) {
temp = new Face (x, y, len, ht);

}

temp.setDrawingColor (col);
return temp;

}
}

Title of Topic Topic 1 - 1.24

Factory Base Class

abstract class Factory {
public abstract Shape getShape (String sh,

int x, int y, int len, int ht,
String c);

}

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 9

Title of Topic Topic 1 - 1.25

The Consequence

• Entirely new suites of shapes and styles can be
added to this system without risking combinatorial
explosion.

– The ‘operational’ code is also much tighter and more
focused.

Factory myFactory =
AbstractFactory.getFactory ("pointilism");

Shape myShape = myFactory.getShape
("circle");

Title of Topic Topic 1 - 1.26

Using Patterns

• Patterns are best decided upon in the design
phase of development.

– During our analysis, we may encounter situations that
require the creation of large amounts of objects.

• We use the factory and/or abstract factory when we
must deal with potentially large combinations of
objects that must be created and configured.

• If we see such a requirement, we make sure to
place our design pattern in the appropriate part of
our class diagram.

Title of Topic Topic 1 - 1.27

Using Patterns

• Much of deciding when we should use patterns is
based on our own pattern recognition.

– We see that a particular kind of functionality is going to
be suited to a pattern of which we are aware.

• Experimenting with patterns is an important part of
building that skill.

– We have to see what patterns can do, how they do it,
and how they can be moulded to meet our own specific
needs.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 10

Title of Topic Topic 1 - 1.28

Conclusion

• Design patterns are an important technique for
handling the implementation of complex
functionality.

– They are something like algorithms for object and class
design.

• The factory design pattern is used to handle the
creation of objects that stem from a common base.

• Abstract factories are factories for factories.
– We choose the factory we want, and use that to

generate objects.

Topic 8 – Design Patterns (1)

Any Questions?

