Topic X — Topic Title Module Title

Analysis, Design and Implementation
Topic 5:
Static Analysis and Design

Scope and Coverage

This topic will cover:
* Requirements Gathering.
« ldentifying abstractions
« Candidate Classes
* Class Diagrams
¢ Converting Class Diagrams into Code

Learning Outcomes

By the end of this topic students will be able to:

« Use Natural Language Analysis to identify
candidate classes and methods.

¢ Design class diagrams
* Implement class diagrams in code.

V0.0 Visuals Handout — Page 1

Topic X — Topic Title Module Title

Introduction

« In this lecture we are going to look at the process of
building static models of software.

— The static model covers those aspects that are
architectural.

— They include diagrams and notations that describe the
relationship between elements of the system.
* The main notation we use to do this is the class
diagram.
— We saw how to draw these in an earlier lecture.

Static Models

« Static models represent the time independent
view of a system.

— The view that does not change based on how much
time has passed or how people have interacted with the
system.

* They are not used to describe interactions with a
system.
— They describe instead the architecture of a system.
 This is also often referred to as a structural view.

|dentifying Requirements

« As part of the work of doing paper prototypes, you
should make note of user expectations.
— These often hint at requirements that are not being
captured.
» Optimal user workflows often do not appear in
formal design documentation.
— It's easily overlooked.
* Whenever a user asks how something is done,
consider it an implied requirement.

V0.0 Visuals Handout — Page 2

Topic X — Topic Title

V0.0

Identifying Classes

» The most difficult thing when it comes to building
class diagrams is working out which classes to
include.

— Usually we progress from a problem statement or a
requirements specification.

» There are formal techniques that aid in identifying
classes.

— We'll look at one called Natural Language Analysis.

« We apply this heuristic process to a description of a
problem

Module Title

Natural Language Analysis

« Natural language analysis permits us to obtain a list
of candidate classes, their relationships and their
attributes.

* Natural Language Analysis (NLA) is the process of
identifying verbs, adjectives and nouns in a piece of
descriptive text.

— Nouns relate to potential classes
— Adjectives relate to potential attributes

— Verbs relate to potential functionality that must be
represented.

Natural Language Analysis

» We take a piece of text and identify each of these
in turns, creating lists.
— Not everything we identify will be useful or relevant.
— Thatis why they are candidates.
» Once we have our lists, we get rid of:
— Duplicates
— Irrelevancies
— Candidates that are out-with our project scope
» What we end up with is a ‘first draft’ of a
representation of the system.

Visuals Handout — Page 3

Topic X — Topic Title

V0.0

NLA Example

We need a system that allows us to manage our library.
It needs to let us add, remove and manipulate books, as
well as add, remove and manipulate customer details.
It should keep a database of all the books that are
available on the shelves and those that are in the
storeroom. Patrons should be able to view our
catalogue through a webpage and place holds on the
books that they wish to reserve.

NLA Example - Nouns

We need a system that allows us to manage our library.
It needs to let us add, remove and manipulate books,
as well as add, remove and manipulate customer
details. It should keep a database of all the books that
are available on the shelves and those that are in the
storeroom. Patrons should be able to view our
catalogue through a webpage and place holds on the
books that they wish to reserve.

NLA Example - Verbs

We need a system that allows us to [manage] our
library. It needs to let us [add], [remove] and
[manipulate] books, as well as [add], [remove] and
[manipulate] customer details. It should [keep] a
database of all the books that are available on the
shelves and those that are in the storeroom. Patrons
should be able to [view] our catalogue through a
webpage and [place] holds on the books that they wish
to reserve.

Module Title

Visuals Handout — Page 4

Topic X — Topic Title Module Title

Candidates

 This gives us an initial list of possible classes and
actions:

System, Library, Books, Customer Manage library, add books, remove

Details, database, shelves, storeroom, books, manipulate books, add

patrons, catalogue, webpage customer details, remove customer
details, manipulate customer details,
keep a database, view the catalogue,
place hold

Candidates

* We then remove those that are synonyms.
— Customers and Patrons
* We remove those that are too high a level of
abstraction.
— Manipulate the library
* We remove those that are already part of our future
design.
— Keep a database
* We remove those that are outside our scope.

Candidates

« Doing this gives us a smaller, more manageable list
of candidates.
 This isn't the ‘correct’ design.
— It's just a starting point.
* We will refine as we go along.

Library, Books, Patron, database, shelves, add books, remove books, manipulate

storeroom, catalogue, webpage books, add customer details, remove
customer details, manipulate customer
details, view the catalogue, place hold

V0.0 Visuals Handout — Page 5

Topic X — Topic Title

V0.0

Constructing a Class Diagram

» Having been given a list of classes and actions, we
need to assign actions to classes.
— We can use this to build up our first class
representation.
« Assigning functionality can be difficult.

- We want it to be stored as close to the data that it is
using as possible.

— We want it to be stored in as high a level of abstraction
as it can to ensure maximum maintainability.

« Again, we don't need to get it right to begin with.

Constructing a Class Diagram

« Constructing the class diagram will help refine our
candidates.
— If we have a class that has no functionality or data
associated with it, we probably don’t need it.
« If we have a class that contains only one single
piece of data, it is probably better represented as
an attribute in another class.

— At this point, we are still on the first draft.
« This is the draft that lets us go back to those for whom we are
building the software.

Resolving Ambiguity

» Most of the documents from which you work will be

incomplete and ambiguous.
— Our NLA process lets us identify clearly where those
ambiguities lie.

« Actions often imply certain attributes are required.

« Structural relationships between classes are often
implied by the words used and the context in which
they are used.

» Sometimes we can work it out ourselves.

— Sometimes we need to ask follow-up questions.

Module Title

Visuals Handout — Page 6

Topic X — Topic Title

V0.0

Resolving Ambiguity

« As an example, look at the functionality we have
linked to a book.
— Add books (okay)
— Remove books (okay)
— Manipulate books (ambiguous)
« Perhaps that means ‘edit’ book details, but we'd
need to check.
« If it means edit the details, what kinds of details do
we need?

First Draft Class Diagram

* Our first class diagram doesn't include a lot of
detail.

— It's mostly so we can go back to the client and check we
have the right structure.

* Note here that we don’t include the web-page in
our class diagram.

— It's not part of the ‘engine’ of our system — we will
address it later.

» Once we are sure we have the right structure, we
can fill in missing detail.

Module Title

Visuals Handout — Page 7

Topic X — Topic Title Module Title

Second Draft Class Diagram

ey

ann L Sanny suplas Sae)

sSany, b sann

Second Draft Class Diagram

« We can't write our program from the class diagram.

— We don't know how any of the methods we have
specified will actually work yet.

« All the class diagram gives us is an ‘at a glance’
view of how the classes interrelate, and what their
available functionality is.

« This is part of the static view of the program.

— It doesn’t matter what a user does, the relationship
between classes in the code is not going to be altered.

Return Types and Parameters

» Notice in our second draft that we include the data
types and parameter lists of operations.
— And yet, we don't know how the methods will work!
« We know (roughly) what kind of information is
going to be needed for a method to function.
— And we simply supply that information.
¢ Though we don't yet know the details of how, for
example, the addBook method will work...

¢ ... We do know the data it is going to need.

V0.0 Visuals Handout — Page 8

Topic X — Topic Title Module Title

Implementing Class Diagrams

» The class diagrams lends itself to implementation
in any object oriented language.
— One of the benefits of UML is that it does not require a
particular implementation language.
« The class diagrams gives us the information we
need to create the structural connections between
each of the classes.

— We do this by implementing them as stub methods.
« Methods without any code.

Implementing Class Diagrams

* Normally, we would wait until we've done a few
iterative drafts of the design before we start writing
code.

— That way we don't waste time on models that are only
going to be changed.

* A lot of user benefit can be obtained by including
the user in the process.

— And rapid, early prototyping is a great way to do that.

« Digital prototyping can also highlight structural

problems.

Digital Prototyping

* We've already looked at paper prototyping.
« Digital prototyping is also a tool we have available.

— It falls into two categories.
« Throw-away prototyping, where the code is written and then
discarded when the project is implemented ‘for real’
« Incremental prototyping, where the prototype is continually
refined and eventually evolves into the finished product.
« The former allows for the development of cleaner

systems.
« The latter allows for developmental efficiency.

V0.0 Visuals Handout — Page 9

Topic X — Topic Title

V0.0

Library Class

bl c void AddPat ron(String Forenare, Siring Surname, Siring Address) {

Pt ron(Siring 10) {

11 ¢ voi d hol dBook(ron, Book baok) {

bl ¢ voi o bor rowBook(Pat n, Book book)
11c voi d ret urnBaok(Patron patron, Baok book) {

11 ¢ Book get Book(String Isbr) (
return null

Class Implementation

« The other two classes are implemented in the
same way.

— The UML diagram tells us the name, type and
parameters of methods.

— The UML tells us the classes and how they relate.
« Our sole responsibility in writing the code from
these diagrams is that it compiles.

— There is no need for it to actually do anything.
« That will come later.

Implementation

» Implementation of code from a UML diagram is not
a clerical task.
— It requires you to make some choices.
« In the code for the library, multiplicity of books and
patrons has been implemented as an List.
— Thatis a judgement call on the behalf of the developer.
» The UML diagram will describe some of the code
you need.

- You will have to make choices of implementation as you
go along.

Module Title

Visuals Handout — Page 10

Topic X — Topic Title

Implementation

* Remember that the class diagram is (at best) an
evolving document.
— It should change as your understanding of the system
changes.

— Most CASE tools offer facilities for automatically
generating code from UML diagrams.
« However, automated solutions are never entirely accurate.
« They also cannot make judgement calls for you.
« However, initial prototypes will reveal structural
deficiencies.

Structural Deficiencies

» No design is perfect.

— They are created by imperfect humans, after all.

» Mistakes will be made.

» The more you explore the models you build, the easier
it will be to see where there are deficiencies in your
class diagrams.

— Missing attributes and operations
— Associations not honoured

» Ensure at all stages you have a system that will
compile!

Conclusion

* Class diagrams can be difficult to construct.

— So we use Natural Language Analysis to give us a starting
point.

» Candidate classes and attributes serve as the first step
towards an accurate representation of a system.

— We need to exercise considerable judgement in deciding
what is and is not a suitable candidate.

» The class diagram gives a static view of the system.
- It is architecture, not functionality.

V0.0

Module Title

Visuals Handout — Page 11

Topic X — Topic Title Module Title

Topic 5 — Static Analysis and Design

Any Questions?

V0.0 Visuals Handout — Page 12

