
Title of Topic Topic 1 - 1.1

Computer Languages

It’s all about the code!

Title of Topic Topic 1 - 1.2

Computer Languages

• Computers find it very difficult to understand natural (human) languages

• Computers are thus programmed using artificial languages designed for

that specific purpose

• Some programming languages are general purpose:

– COBOL

– C

– Java

• There are also many specialist programming languages

– For Web programming (HTML5, XML, JavaScript, PHP)

– For Database programming (SQL)

– For Games programming (C++, C#)

– For Data Analytics programming (R, Python)

Title of Topic Topic 1 - 1.3

Computer Languages

• There are several ways of categorising programming languages:

– Assembly languages (Hardware & Processor-specific)

– Functional languages (e.g. LISP)

– Procedural languages (e.g. C, COBOL)

– Object-Oriented languages (e.g. C++, Java)

– Declarative languages (SQL)

Title of Topic Topic 1 - 1.4

Language-Levels

• Languages also have different levels:

High-Level
Languages

Mid-Level (Assembly
Language)

Low-Level (Machine
Code)

Human-oriented

Machine-oriented

Title of Topic Topic 1 - 1.5

Low-Level Language

Machine Code

– Written directly in binary (0/1s) format

– Exactly what the computer understands

– Can be executed immediately – so very fast

– Very difficult for people to write & understand

– Called ‘programming to the metal’

– The first generation of programming languages

– Used in industrial or low-level hardware settings

– Format directly tied to architecture of hardware

Title of Topic Topic 1 - 1.6

Mid-Level Language

Assembly Languages

– Written in ‘mnemonics’ (ADD, LOAD, HALT etc.)

– Codes represent machine code instructions

– See example code on next slide…

– (Relatively) easier than machine code for people

to understand – BUT needs translating into

machine code to run (covered later)

– Although higher level than machine code, it is still

really low-level as format is tied to the hardware

Title of Topic Topic 1 - 1.7

Mid-Level Language

Assembly Languages

Title of Topic Topic 1 - 1.8

High-Level

High-Level languages

– Written in ‘English-like’ words and symbols

– Much easier for people to write and understand

– The vast majority of code is now written in high-level

languages like Java, SQL, PHP, C++ etc.

– Needs significant translation to run (covered later)

– See example code on next slide…

Title of Topic Topic 1 - 1.9

High-Level

High-Level languages

Title of Topic Topic 1 - 1.10

Language Translation

• Human programmers develop in high-level code

– Java, C++, COBOL, C# etc.

• Computers do not understand this code

• Computers understand low-level machine code

– 010101010 etc.

• We thus need a translation process

• Two approaches:

– Interpreters

– Compilers

Title of Topic Topic 1 - 1.11

Interpreters

• Real-time conversion from high-level code to low-level code

• High-level (source) code dynamically converted to low-level (target)

code – with no intermediate saved file – all done ‘on-the-fly’

• Just like a human translator converting (say) Russian to English for

an English tourist in Moscow

Russian English

This Photo by Unknown

Author is licensed under

CC BY-NC-ND

Human

Translator

http://www.flickr.com/photos/szpyreczka/702464159/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Title of Topic Topic 1 - 1.12

Compilers

• Ahead-of-time conversion from high-level to low-level

• High-level (source) code statically converted to low-level (target)

code – using an intermediate saved file

• Just like the English tourist buying a Russian-to-English dictionary

before flying to Moscow – now no need for a human translator

Russian English

This Photo by Unknown

Author is licensed under

CC BY-NC-ND

Written

Translation

http://www.flickr.com/photos/szpyreczka/702464159/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Title of Topic Topic 1 - 1.13

Translation Comparison

Compiler Interpreter

Whole source code file converted

at a time – ONCE.

Processes a single statement at

a time - SLOWER

Save resultant executable file for

later execution – READY TO GO

No executable file created or

saved – REPEAT EACH TIME

Once translated, executable can

be run multiple times - EFFICIENT

Need to translate every time it is

run - INEFFICIENT

Easy to distribute converted

executable file – EFFICIENT

No executable file to distribute

could be SAFER?

Slow process during development

– BUT ONLY DONE ONCE

Fast development time – BUT

MUST BE REPEATED

Title of Topic Topic 1 - 1.14

Assemblers

• Same principle as compilers & interpreters – to

translate a higher-level language down into

machine code – so the computer can execute it

• An ‘assembler’ is a specialised computer program

that translates assembly language code down into

machine code

Title of Topic Topic 1 - 1.15

Semantics V Syntax

• Two things can go wrong when writing software:

– Your logic (algorithm design) is flawed
• You have misunderstood the logic needed to solve the problem

• These are known as semantic (meaning ‘meaning’) errors

• You have tried to do something logically impossible such as:

» X/0 (Dividing by zero produces infinity!)

» IF (X > 100) AND (X < 100) THEN… (This is logically

impossible)

– Your code (program keywords) is flawed
• The underlying logic is valid but the actual syntax is wrong…

» IFF (X > 50) THEN… (Should be IF)

» WHIL (X > 50) DO… (Should be WHILE)

Title of Topic Topic 1 - 1.16

Semantics V Syntax

• Semantic (logical) errors are hard for a computer

to spot and may not be picked up in the translation

process – relies on human intervention.

• Semantic errors often only noticed at run-time

• Syntax (spelling/format) errors are easy for a

computer to spot and will be flagged-up during the

translation process

• Syntax errors will never get to run-time – as they

are detected during translation process and fixed

Title of Topic Topic 1 - 1.17

References

• https://opensource.com/resources/what-open-source

• https://opensource.org/

• https://www.gnu.org/software/software.en.html

https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.org/
https://opensource.org/
https://opensource.org/
https://opensource.org/
https://opensource.org/
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html

Topic 6 – Software, Installation and

Configuration

Any Questions?

