It's all about the code!

]
mcc Awarding Great British Qualifications
@ education
18!




Computers find it very difficult to understand natural (human) languages

Computers are thus programmed using artificial languages designed for
that specific purpose

Some programming languages are general purpose:
- COBOL

- C
— Java
There are also many specialist programming languages
— For Web programming (HTML5, XML, JavaScript, PHP)
— For Database programming (SQL)
— For Games programming (C++, C#)
— For Data Analytics programming (R, Python)

mcc Awarding Great British Qualifications
education



« There are several ways of categorising programming languages:

— Assembly languages (Hardware & Processor-specific)
— Functional languages (e.g. LISP)

— Procedural languages (e.g. C, COBOL)

— Object-Oriented languages (e.g. C++, Java)

— Declarative languages (SQL)

mcc Awarding Great British Qualifications
education
e%



Language-Levels

* Languages also have different levels:

of£51

o [{o] g IMEAVEY Human-oriented
Languages

Mid-Level (Assembly
Language)

Bl Low-Level (Machine
Code)

Machine-oriented




Low-Level Language

e
Machine Code SO—

— Written directly in binary (0/1s) format
— Exactly what the computer understands
— Can be executed immediately — so very fast

— Very difficult for people to write & understand

— Called ‘programming to the metal’

— The first generation of programming languages

— Used in industrial or low-level hardware settings
— Format directly tied to architecture of hardware




Mid-Level Language

Assembly Languages

— Written in ‘'mnemonics’ (ADD, LOAD, HALT etc.)
— Codes represent machine code instructions
— See example code on next slide...

— (Relatively) easier than machine code for people
to understand — BUT needs translating Into
machine code to run (covered later)

— Although higher level than machine code, it is still
really low-level as format is tied to the hardware




Mid-Level Language

Assembly Languages

Machine code

Assembly code

Description

001 1 000010 LOAD #2 Load the value 2 into the Accumulator

010 0 001101 STORE 13 Store the value of the Accumulator in memory location 13
001 1 000101 LOAD #5 Load the value 5 into the Accumulator

0100 001110 STORE 14 Store the value of the Accumulator in memory location 14
001 0001101 LOAD 13 Load the value of memory location 13 into the Accumulator
011 0001110 ADD 14 Add the value of memory location 14 to the Accumulator
0100 001111 STORE 15 Store the value of the Accumulator in memory location 15
111 0 000000 HALT Stop execution

CC

ducation

®
) Awarding Great British Qualifications




High-Level

S llllllélé;énllé;
High-Level languages

— Written in ‘English-like’ words and symbols
— Much easier for people to write and understand

— The vast majority of code is now written in high-level
languages like Java, SQL, PHP, C++ etc.

— Needs significant translation to run (covered later)
— See example code on next slide...




®
m(:c Awarding Great British Qualifications
@ education




Language Translation

 Human programmers develop in high-level code
— Java, C++, COBOL, C# etc.

« Computers do not understand this code

« Computers understand low-level machine code
— 010101010 etc.

* We thus need a translation process

* Two approaches:
— Interpreters
— Compilers




Interpreters

« Real-time conversion from high-level code to low-level code

« High-level (source) code dynamically converted to low-level (target)
code — with no intermediate saved file — all done ‘on-the-fly’

« Just like a human translator converting (say) Russian to English for
an English tourist in Moscow

Russian §

mcc Awarding Great British Qualifications
education
:


http://www.flickr.com/photos/szpyreczka/702464159/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Compillers

« Ahead-of-time conversion from high-level to low-level

« High-level (source) code statically converted to low-level (target)
code — using an intermediate saved file

 Just like the English tourist buying a Russian-to-English dictionary
before flying to Moscow — now no peed for a human translator

Russian

mcc Awarding Great British Qualifications
education
sy -



http://www.flickr.com/photos/szpyreczka/702464159/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Translation Comparison

Compiler =N Interpreter

Whole source code file converted | Processes a single statement at
at a time — ONCE. a time - SLOWER

Save resultant executable file for| No executable file created or
later execution — READY TO GO saved — REPEAT EACH TIME

Once translated, executable can |Need to translate every time it is
be run multiple times - EFFICIENT | run - INEFFICIENT

Easy to distribute converted | No executable file to distribute

executable file — EFFICIENT could be SAFER?
Slow process during development | Fast development time — BUT
— BUT ONLY DONE ONCE MUST BE REPEATED

®
mcc Awarding Great British Qualifications
education
sy —



Assemblers

« Same principle as compilers & interpreters — to
translate a higher-level language down into
machine code — so the computer can execute It

* An ‘assembler’ is a specialised computer program
that translates assembly

machine code

anguage code down into

Machine code

Assembly code Description

001 1 000010

LOAD #2 Load the value 2 into the Accumulator

0100001101

STORE 13 Store the value of the Accumulator in memory location 13

001 1 000101

LOAD #5 Load the value 5 into the Accumulator

010 0 001110

STORE 14 Store the value of the Accumulator in memory location 14

001 0 001101 LOAD 13 Load the value of memory location 13 into the Accumulator
011 0 001110 ADD 14 Add the value of memory location 14 to the Accumulator
0100001111 STORE 15 Store the value of the Accumulator in memory location 15

111 0 000000

HALT Stop execution

mcc Awarding Great British Qualifications
education
sy —



Semantics V Syntax

* Two things can go wrong when writing software:

— Your logic (algorithm design) is flawed
* You have misunderstood the logic needed to solve the problem
* These are known as semantic (meaning ‘meaning’) errors
* You have tried to do something logically impossible such as:

» X/0 (Dividing by zero produces infinity!)
» IF (X > 100) AND (X < 100) THEN... (This is logically
Impossible)
— Your code (program keywords) is flawed
* The underlying logic is valid but the actual syntax is wrong...
» IFF (X >50) THEN... (Should be IF)
» WHIL (X >50) DO... (Should be WHILE)

®
mcc Awarding Great British Qualifications
Py education
=2



Semantics V Syntax

« Semantic (logical) errors are hard for a computer
to spot and may not be picked up In the translation
process — relies on human intervention.

« Semantic errors often only noticed at run-time

« Syntax (spelling/format) errors are easy for a
computer to spot and will be flagged-up during the
translation process

« Syntax errors will never get to run-time — as they
are detected during translation process and fixed




References

* https://opensource.com/resources/what-open-source
- https://opensource.org/
* https://www.gnu.org/software/software.en.html

®
C Awarding Great British Qualifications
educat
s ucation
=4


https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.org/
https://opensource.org/
https://opensource.org/
https://opensource.org/
https://opensource.org/
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html
https://www.gnu.org/software/software.en.html

®
@C Awarding Great British Qualifications
@ education

Topic 6 — Software, Installation and
Configuration

Any Questions?



