
© NCC Education Limited

Dynamic Websites

Topic 8:

Web Development Tools

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:

• Using cookies to provide persistent data for PHP

applications;

• Use sessions to provide persistent data for PHP

applications;

• Use Ajax to build a database.

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:

• Understand cookies and sessions and how they

can be used in a website;

• Use AJAX to create a database.

Title of Topic Topic 1 - 1.4

Introduction

• In this lecture, we will look at how cookies and sessions can

be integrated into a website.

• We are going to expand our Ajax understanding so that we

can profitably use it to create front-ends to our databases.

– We will create an Ajax front-end that allows us to both query and

manipulate a database.

• By the end of this lecture, you will be well placed to script

compelling user interfaces for your users.

Title of Topic Topic 1 - 1.5

Cookies and Sessions - 1

• Cookies are files that are stored on a user’s

computer that contains certain pieces of

information.

• Sessions fulfil the same role, but most of the

information does not get stored on a user’s

computer.

• Cookies are declared before any HTML in a

script and are available on the next page load

by using the setcookie function.

Title of Topic Topic 1 - 1.6

Cookie Example

Title of Topic Topic 1 - 1.7

The Next Page

Title of Topic Topic 1 - 1.8

Manipulating Cookies

• We can change the value of a cookie by altering

it directly in the $_COOKIE variable:

• $_COOKIE[“texttokeep”] = “Hello World”;

• Cookies can be deleted by setting an expiry

date:

• Setcookie (“texttokeep”, “”, time() – (60*60));

Title of Topic Topic 1 - 1.9

Sessions - 1

• Sessions fill the same role as cookies.

• They are managed by a pair of cookies – one on the server and one on

the client

• The Client cookie contains a reference to a session stored on the

server.

• The server manages the data for that session.

• To setup a session, we use the session_start function of PHP.

• As with a cookie, this must come before any HTML is sent to the

browser.

<?

Session_start();

?>

Title of Topic Topic 1 - 1.10

Sessions - 2

• Once you have a session open, you can register

something as being a session variable, like so:

• $_SESSION[“mytext”]=$mytext;

• This makes sure that the mytext variable is

available on any other pages making use of the

session.

• The variables are stored in the $_SESSION

variables in the same way that cookies are.

Title of Topic Topic 1 - 1.11

Sessions Example

Title of Topic Topic 1 - 1.12

Session_next_page.php

Title of Topic Topic 1 - 1.13

Manipulation of Sessions

• Once a session has been created it is easy to

manipulate through $_SESSION variable.

• Session data can be deleted through unset

function:

• Unset($_SESSION[“something_sensitive”]);

• You can destroy a session using

session_destroy.

Title of Topic Topic 1 - 1.14

A Simple Database

• Now we will create an Ajax front-end to a simple

database.

– It has two tables, ID And Description.

• We need to create this database on our server,

which we ill do with a dedicated ‘setup.php’ file.

– This creates the table and populates it with some basic

test data.

• With Ajax, we must create pages that can handle

our queries.

– This is done using PHP.

Title of Topic Topic 1 - 1.15

Setup.php (Abridged)

Title of Topic Topic 1 - 1.16

An Ajax Frontend

• We can already create an Ajax-front end to this.

– It is just a little limited.

• In an ideal web application, we separate

presentation from content.

– We have not really been doing this so far.

• If it were the case that our PHP scripts were to be

responsible for presentation, then it would be quite

simple to create the front end.

– We just change the URL for our Ajax requests.

Title of Topic Topic 1 - 1.17

Querying Content - 1

Title of Topic Topic 1 - 1.18

Querying Content - 2

Title of Topic Topic 1 - 1.19

Ajax Frontend - 1

Title of Topic Topic 1 - 1.20

XML Output

• The XML discussion we had in a previous lecture is

the foundation for this.

– We want to output our data as an XML file and have

Ajax format it for us.

• To do this, we need to discuss some new PHP

syntax.

– The creation and manipulation of a DOM file.

• This is done through the DOMDocument class.

Title of Topic Topic 1 - 1.21

Creating a DOM Tree

• We are going to manually construct this.

– Luckily, the process is not complicated.

• At each step, we create a node.

• We configure that node.

• We append it to a parent node (unless it is the root

note).

• We then output it as the content of our PHP page.

• The important thing is not to lose track of what is

being appended to what.

Title of Topic Topic 1 - 1.22

Creating a DOM Node

• We need a root note

– This is the one to which all our records in the database

will be appended.

• The syntax for this in PHP is as follows:

– $doc = new DPMDocument();

– $doc->formatOutput = true;

• Then within the loop over our results, we append

the contents of results in turn to our root.

Title of Topic Topic 1 - 1.23

Iterating Over Results

Title of Topic Topic 1 - 1.24

Finally

• At the end, we use the saveXML method to output

the contents of our DOM tree.

– This gives us the document out as a simple string which

we can echo in the normal way.

– Echo $doc->saveXML();

• At the end of this, we get an XML document from

our PHP script which we can then interpret and

parse in our Ajax front-end.

– Properly separating presentation from processing.

Title of Topic Topic 1 - 1.25

Serving an XML Document

• Unless we tell PHP otherwise, it will attempt to

serve this as a standard HRML page.

– We can overrise this by issuing a header directive:

– header(‘Content-Type: text/xml; charset=utf-8’)

• This must come before all other output (including

whitespace).

– When Ajax receives a document with this header

information, the results go into responseXML rather

than responseText.
• And we can then parse it as a DOM document.

Title of Topic Topic 1 - 1.26

The XML Document We Get

Title of Topic Topic 1 - 1.27

Back to Ajax

• Our next step is to interpret this XML in Ajax.

– This too involves some XML parsing of the document

we obtain via our Ajax request.

• We use the responseXML property of our

XMLHttpRequest objective for this, rather than

responseText.

• To begin with, we will convert the XML we get into

a table representation within our HTML pages.

– and then look at other ways to spruce up our

application.

Title of Topic Topic 1 - 1.28

Interpreting the DOM Tree

• We do not need to do anything extra to get a DOM tree.

– That is handled for us by Ajax.

• Getting an array that contains all of our things is easy:

– Elements =

XML.documentElement.getElementsbyTagName(“thing”);

• We can iterate over this array to construct our table in Ajax.

– To do that, we need to understand what is in a node.

Title of Topic Topic 1 - 1.29

Ajax Create Table Function

Title of Topic Topic 1 - 1.30

Outputting the Table

• The responseXML property contains the formatted

DOM tree.

– We just pass that to our create table function to create

our output.

Title of Topic Topic 1 - 1.31

Browsing the Database

• We are going to populate a combo box that

contains all the valid user IDs in our database.

– There are other techniques we can use, but this is the

one for us.

• To do this, we need to adjust our PHP page so that

we can query a full table if no parameters are

provided:

Title of Topic Topic 1 - 1.32

Populating the Combo Box - 1

• We populate the combo box in the same way we

built the table.

– Construct the HTML.

– Place it somewhere on the form.

• Assume that we have a select form element called

data.

– We want to put the options between the opening and

closing tags for that element.

• This is something we can do.

Title of Topic Topic 1 - 1.33

Populating the Combo Box - 2

Title of Topic Topic 1 - 1.34

Populating the Combo Box - 3

• We bind this into the load event of out HTML page.

– That goes into onLoad event handler of the <body> tag.

• Next, we need to create a function that lets us

query the database for the description associated

with an ID.

– We will notify our setup Ajax function to do this, to

improve the modularity of our code.

• We bind this function into the onChange event

handler of our Select element.

Title of Topic Topic 1 - 1.35

Navigating the Database - 1

Title of Topic Topic 1 - 1.36

Navigating the Database - 2

Title of Topic Topic 1 - 1.37

Updating the Database

• Updating the database requires both a new

function in our front-end, and a PHP script on the

server.

Title of Topic Topic 1 - 1.38

Updating the Database - PHP

Title of Topic Topic 1 - 1.39

The HTML

• The HTML that defines our static code is very

simple, setting up only the containers and the event

handlers:

Title of Topic Topic 1 - 1.40

The Result

• The result is a simple dynamic application that uses

Ajax to create a seamless user experience.

• An important element of the design here is that we

have progressed from using PHP to handle our

presentation.

– It is now a job for JavaScript and Ajax.

• The main reason for this is to ensure modularity.

– We can easily swap out back-end and front-end

elements if their roles are well defined.

Title of Topic Topic 1 - 1.41

Conclusion

• At this point, you are capable of creating very

rich and interactive dynamic websites for data

driven applications.

• In the next topic you will look at integrating more

mobile technologies with website design and

how web services can be used to enhance the

website.

Title of Topic Topic 1 - 1.42

References

• W3.schools.com, 2017. [online] Available at

www.w3schools.com

http://www.w3schools.com/

Topic 8 – Web Development Tools

Any Questions?

