NCC Awarding Great British Qualifications

education

e

Dynamic Websites
Topic 8:
Web Development Tools

Scope and Coverage

This topic will cover:

« Using cookies to provide persistent data for PHP
applications;

« Use sessions to provide persistent data for PHP
applications;

« Use Ajax to build a database.

Learning Outcomes

By the end of this topic students will be able to:

« Understand cookies and sessions and how they
can be used in a website;

 Use AJAX to create a database.

Introduction

* |n this lecture, we will look at how cookies and sessions can
be integrated into a website.

* We are going to expand our Ajax understanding so that we
can profitably use it to create front-ends to our databases.
— We will create an Ajax front-end that allows us to both query and
manipulate a database.
« By the end of this lecture, you will be well placed to script
compelling user interfaces for your users.

Cookies and Sessions - 1

« (Cookies are files that are stored on a user’s
computer that contains certain pieces of
Information.

e Sessions fulfil the same role, but most of the
iInformation does not get stored on a user’s
computer.

* Cookies are declared before any HTML in a
script and are available on the next page load
by using the setcookie function.

Cookie Example

<?
$thetext = $ POST["mytext"];
setcookie ("texttokeep", Sthetext, time() + 10000);
?>
<html>
<head>
<title>Cookie Page</title>
</head>
<body>
<?
echo "<p>The post text " . $_POST[”mytext”]
", we won't be able to pass that on.</p>";
?>
Onto the next page
</body>

</html>

s

The Next Page

<html>
<head>
<title>Passed it on</title>
</head>
<body>
<?
echo "<p>The post text is " . $ POST["mytext"]

", we didn't get that passed on.</p>";
echo "<p>The text is still "
$ _COOKIE["texttokeep"]
", as we know from cookies.</p>";
?>

</body>
</html>

i3 s

Ncc Awarding Great British Qualifications
s wducation
T

Manipulating Cookies

* We can change the value of a cookie by altering
it directly in the $ COOKIE variable:

$_COOKIE[*“texttokeep”] = “Hello World”;

« Cookies can be deleted by setting an expiry
date:

Setcookie (“texttokeep”, *7, time() — (60*60));

Sessions - 1

« Sessions fill the same role as cookies.

« They are managed by a pair of cookies — one on the server and one on
the client

« The Client cookie contains a reference to a session stored on the
server.
The server manages the data for that session.
« To setup a session, we use the session_start function of PHP.

« As with a cookie, this must come before any HTML is sent to the
browser.

<?
Session_start();
?>

/C) Awarding Great British Qualifications
ed

Sessions - 2

* Once you have a session open, you can register
something as being a session variable, like so:
« $ SESSION[*mytext’]=$mytext;

« This makes sure that the mytext variable is
available on any other pages making use of the
session.

* The variables are stored in the $ SESSION
variables in the same way that cookies are.

Sessions Example

<?
session_start();
?>
<html>
<head>
<title>Cookie Page</title>
</head>
<body>
<?
Smytext = $ POST["mytext"];
echo "<p>Thg post text is Smytext and we'll register that ™
“in a session.</p>";
$_SESSION["mytext"] = $Smytext;
?>
Onto the next page
</body>
</html>

s
m c Awarding Great British Qualifications
education

Session_next_page.php

<?
session start() ;
2> I
<html>
<head>
<title>Passed it on</title>
</head>
<body>
<?
echo "<p>The session variable mytext is "
$ SESSION["mytext"] . ".</p>";
?2>
</body>

</html>

Manipulation of Sessions

* Once a session has been created it Is easy to
manipulate through $ SESSION variable.

« Session data can be deleted through unset
function:

« Unset($ SESSION[“something_sensitive”]);

* You can destroy a session using
session_destroy.

A Simple Database

* Now we will create an Ajax front-end to a simple
database.

— It has two tables, ID And Description.

 \We need to create this database on our server,
which we ill do with a dedicated ‘setup.php’ file.

— This creates the table and populates it with some basic
test data.

« With Ajax, we must create pages that can handle
our queries.
— This is done using PHP.

Setup.php (Abridged)

<?

Shost = "localhost";

Suser = "monkel3 nccuser";

$pass = "necel";

$database = "monkel3 nec";

$connection = mysqgl_connect($host, Suser, Spass)
or die ("Couldn't connect to database");

mysql_select_db ($database);

$query = "DROP TABLE Things";

$ret = mysqgl_query ($query, Sconnection);

Squery = "CREATE TABLE Things (ID warchar (15),

$ret = mysqgl_query ($query, Sconnection);

Squery = "INSERT INTO Things (ID, Description)
$ret = mysql_ query ($query, S$Sconnection);
Squery = "INSERT INTQO Things (ID, Description)

$ret = mysqgl_query ($query, Sconnection);
Squery = "INSERT INTO Things (ID, Description)
$ret = mysql_query ($query, $connection);
Squery = "INSERT INTO Things (ID, Description)
$ret = mysgl_query ($query, S$connection);

?>

Desecription warchar (15))";

values

values

values

values

 \"1\",
(\"2\",
(\r|3\r|!

(\r|4\n’

\"Blue Meanies\")";
\"Yellow Submarines\")";
\"Red letter days\")";

\"White christmases\")";

& Awarding Great British Qualifications
education

An Ajax Frontend

* We can already create an Ajax-front end to this.
— Itisjust a little limited.

 In an ideal web application, we separate
presentation from content.

— We have not really been doing this so far.

* If It were the case that our PHP scripts were to be
responsible for presentation, then it would be quite
simple to create the front end.

— We just change the URL for our Ajax requests.

Querying Content - 1

Shost = "localhost";

Suser = "monkel3 nccuser";
$pass = "ncel";

Sdatabase = "monkel3 nce";

$thing = $ GET["thing"];

$connection = mysqgl connect($host, $user, $pass)
or die ("Couldn't connect to database") ;

mysqgl select db ($database) ;

Squery = "SELECT * from Things where ID='$thing'";

$ret = mysqgl query ($query, $connection);

if ('Sret) {

echo "<p>Something went wrong: " . mysql error(); + "</p>";

$num results = mysqgl num rows ($ret);

i3 s
mcc Awarding Great British Qualifications
education

Querying Content - 2

if ($num _results == 0) {
echo "<p>No such entry</p>";
}

else {
echo "<table border='1'>";
echo "<tr>";
echo "<th>ID</th>";
echo "<th>Description</th>";
echo "</tr>";

for ($i = 0; $i < sizeof ($num _results); $i++) {
$row = mysql fetch array ($ret);

echo "<tr>";
echo "<td>" . Srow['ID'] . "</td>";
echo "<td>" . $row['Description'] . "</td>";

echo "</tr>";
}

echo "</table>";

mysql_close(Sconnection);

Ajax Frontend - 1

function setupAjax(form) {
var text = form.myText.value;
var url = 'query content.php?thing=' + text;

if (window.XMLHttpRequest) {
// Code for modern browsers
request=new XMLHttpRequest() ;
}
else {
// code for older versions of Internet Explorer
request = new ActiveXObject ("Microsoft.XMLHTTP") ;

request.onreadystatechange=function() ({
if (request.readyState==4 && request.status==200) {
document.getElementById ("results") . innerHTML= request.responseText;

request.open ("GET", url, true);
request.send() ;

education

s
&CQ Awarding Great British Qualifications

XML Output

 The XML discussion we had in a previous lecture is
the foundation for this.

— We want to output our data as an XML file and have
Ajax format it for us.

* To do this, we need to discuss some new PHP
syntax.

— The creation and manipulation of a DOM file.

 This is done through the DOMDocument class.

Creating a DOM Tree

« We are going to manually construct this.
— Luckily, the process is not complicated.

« At each step, we create a node.
« We configure that node.

* We append it to a parent node (unless it is the root
note).

« We then output it as the content of our PHP page.

* The important thing is not to lose track of what is
belng appended to what.

Creating a DOM Node

 We need a root note

— This is the one to which all our records in the database
will be appended.

* The syntax for this in PHP is as follows:
— $doc = new DPMDocument();
— $doc->formatOutput = true;

* Then within the loop over our results, we append
the contents of results Iin turn to our root.

Iterating Over Results

for ($i = 0; $i < $num_results; Si++) {

$row mysqgl _fetch_array ($ret);
$node = $doc->createElement("thing");
$name = $doc->createElement("ID");

Sname->appendChild ($doc->createTextNode (Srow["ID"])) ;
Snode->appendChild(S$name) ;
Sdescription = $doc->createElement("description");

S$description->appendChild ($doc-
>createTextNode (S$Srow["Description"])) ;

$node->appendChild($description);

Sroot->appendChild (S$Snode) ;

Finally

« At the end, we use the saveXML method to output
the contents of our DOM tree.

— This gives us the document out as a simple string which
we can echo in the normal way.

— Echo $doc->saveXML();

« At the end of this, we get an XML document from
our PHP script which we can then interpret and
parse in our Ajax front-end.

— Properly separating presentation from processing.

Serving an XML Document

* Unless we tell PHP otherwise, it will attempt to
serve this as a standard HRML page.
— We can overrise this by issuing a header directive:
— header(‘Content-Type: text/xml; charset=utf-8’)

* This must come before all other output (including
whitespace).

— When Ajax receives a document with this header
Information, the results go into responseXML rather

than responseText.
« And we can then parse it as a DOM document.

The XML Document We Get

<?xml version="1.0"?>
<all things>
<thing>
<ID>1</ID>
<description>Blue Meanies</description>
</thing>

<thing>

<ID>2</ID>

<description>Yellow Submarine</description>
</thing>

<thing>

<ID>3</ID>

<description>Red letter days</description>
</thing>

<thing>
<ID>4</ID>
<description>White christmas</description>
</thing>
</all things>

i3 s
mcc Awarding Great British Qualifications
education

Back to Ajax

* Our next step Is to interpret this XML In Ajax.
— This too involves some XML parsing of the document
we obtain via our Ajax request.
* We use the responseXML property of our
XMLHttpRequest objective for this, rather than
responseText.

* To begin with, we will convert the XML we get into
a table representation within our HTML pages.

— and then look at other ways to spruce up our
application.

Interpreting the DOM Tree

* We do not need to do anything extra to get a DOM tree.
— That is handled for us by Ajax.

« Getting an array that contains all of our things is easy:
— Elements =
XML.documentElement.getElementsbyTagName(“thing”);

 We can iterate over this array to construct our table in Ajax.
— To do that, we need to understand what is in a node.

Ajax Create Table Function

~J

function createTable (XML) {
var table;
var elements;
var id, description;

elements = XML.documentElement.getElementsByTagName ("thing") ;
table = "<table border = \"1\">";

table += "<tr>";
table += "<th>ID</th>";
table += "<th>Description</th>";
table += "</tr>";
for (1 = 0; i < elements.length; i++) {
id = elements[i] .getElementsByTagName ("ID") ;

description = elements[i] .getElementsByTagName ("description");
table += "<tr>";
table += "<td>" + id[0].firstChild.nodeValue + "</td>";

table +

"<td>" + description[0].firstChild.nodeValue + "</td>";

table += "</txr>";
}
table += "</table>"“;
return table;

Outputting the Table

* The responseXML property contains the formatted
DOM tree.

— We just pass that to our create table function to create
our output.

request.onreadystatechange=function() {
if (request.readyState==4 && request.status==200) {
document.getElementById ("results") .innerHTML=
createTable

(request. responseXML) ;

Browsing the Database

* We are going to populate a combo box that
contains all the valid user IDs In our database.
— There are other techniques we can use, but this is the
one for us.
* To do this, we need to adjust our PHP page so that
we can query a full table if no parameters are
provided:

if ($thing) {
S$query = "SELECT * from Things where ID='$thing'"|;
}
else {
Squery = "SELECT * from Things";

Populating the Combo Box - 1

« We populate the combo box in the same way we
built the table.

— Construct the HTML.
— Place it somewhere on the form.
« Assume that we have a select form element called
data.

— We want to put the options between the opening and
closing tags for that element.

* This is something we can do.

Populating the Combo Box - 2

function updateComboBox () {
var url;

url = "query content xml.php";
// Usual code for creating an XMLHttpRequest object goes here.

request.onreadystatechange=function() {
if (request.readyState==4 && request.status==200) {

var text = "";

var elements;

var id;

elements = request.responseXML.documentElement.getElementsByTagName ("thing") ;

for (i = 0; i < elements.length; i++) {
id = elements[i] .getElementsByTagName ("ID");

text += "<option>" + id[0].firstChild.nodeValue + "</option>";
}

document.getElementById ("data") .innerHTML = text;

}
request.open ("GET", url, true);
request.send() ;

}

Populating the Combo Box - 3

« We bind this into the load event of out HTML page.
— That goes into onLoad event handler of the <body> tag.

* Next, we need to create a function that lets us
guery the database for the description associated
with an ID.

— We will notify our setup Ajax function to do this, to
Improve the modularity of our code.

* We bind this function into the onChange event
handler of our Select element.

Navigating the Database - 1

function setupAjax(url) ({
varkued;

// Usual code for creating an XMLHttpRequest object goes here.
request.onreadystatechange=function() {
if (request.readyState==4 && request.status==200) {
if (request.responseXML) ({
updateFrontend (request.rebponseXML);
}

request.open ("GET", url, true);
request.send() ;

function navigateDatabase (form) {
var url;
var id;

id = form.data.value;
url = 'query content xml.php?thing=' + id;
setupAjax (url);

Navigating the Database - 2

function updateFrontend (XML) ({
var form = document.getElementById("mainForm™")
var elements =
XML .documentElement.getElementsByTagName ("thing") ;
var id, description;

if (elements.length == 0) ({
document.getElementById ("id") .innerHTML = "";
form.description.value = "";
}
else {
description = elements[0] .getElementsByTagName
("description") ;
form.description.value = description[0].firstChild.nodeValue;

i3 s
mcc Awarding Great British Qualifications
>, aeducation
5
)

-~

Updating the Database

« Updating the database requires both a new

function in our front-end, and a PHP script on the
server.

function updateDatabase (form) {
var url
var desc;

var id;
id = form.data.value;
desc = form.description.value;

i1f (desc.length == 0) {
return;

}

url = 'update content xml.php?id=' + 1id + "&description=" + desc;
setupAjax (url);

Updating the Database - PHP

<?
Shost = "localhost";
Suser = "monkel3 nccuser";
$pass = "ncel";
Sdatabase = "monkel3 ncc";

$id= $ GET["id"];
Sdescription = $§ GET["description"];

Sconnection mysqgl connect($host, $user, $pass)
or die ("Couldn't connect to database");
mysqgl_ select db ($database) ;

$id = mysqgl_real escape_string ($id);
$description = mysgl real escape string ($description) ;

Squery = "UPDATE Things SET Description = 'S$description' WHERE ID='$id'";
Sret = mysql query ($query, $connection);
mysql_close($connection);

?>

i3 s
mcc Awarding Great British Quali
education

5 -

The HTML

 The HTML that defines our static code Is very
simple, setting up only the containers and the event
handlers:

<body onload="updateComboBox ()'">
<script language="JavaScript'">
// Code goes here
</script>

<form name = "mainForm" id = "mainForm'">
<p>ID</p>
<select id = "data" onChange="navigateDatabase (this.form) ">
</select>

<p>Description</p>
<input type = "text" name = "description" onBlur="updateDatabase (this.form)">
</ form>
</body>
</html> I

g s
mcc Awarding Great British Qualifications
-~ education
5
)
% >

The Result

* The result is a simple dynamic application that uses
Ajax to create a seamless user experience.

« An important element of the design here is that we
have progressed from using PHP to handle our
presentation.

— Itis now a job for JavaScript and Ajax.

 The main reason for this is to ensure modularity.

— We can easily swap out back-end and front-end
elements if their roles are well defined.

Conclusion

« At this point, you are capable of creating very
rich and interactive dynamic websites for data
driven applications.

* In the next topic you will look at integrating more
mobile technologies with website design and

how web services can be used to enhance the
website.

References

« W3.schools.com, 2017. [online] Avalilable at
www.w3schools.com

http://www.w3schools.com/

®
ﬁc Awarding Great British Qualifications
@ education

Topic 8 — Web Development Tools

Any Questions?

