
© NCC Education Limited

Module Title

Topic 5:

Design and Build a Database (2)

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:

• An introduction to GET and POST

• An introduction to MySQL

– Database queries

– Data types and ranges

– SQL statements

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:

• Design and build a database which interacts with

web page.

Title of Topic Topic 1 - 1.4

Introduction

• This lecture will introduce you to understanding how HTTP

permits the sending of data to web pages and how to use MySQL

into our dynamic websites architecture.

– MySQL fits into the data layer of our N-Tier architecture.

• PHP acts as the mediator between the client and the database

management system.

– The presentation layer never communicates directly with the

data layer.

– The data layer never communicates directly with the client

layer.

Title of Topic Topic 1 - 1.5

Our Architecture So Far

Title of Topic Topic 1 - 1.6

Databases and PHP

• In order to make use of a data layer, you must have

access to a database.

– You will need one for the activities throughout this

course.

– You will need a username and password.
• You will be provided with these as part of your course.

– For the purpose of this course, we assume that your

database is stored on a localhost.
• It doesn’t have to be, but this would be the usual arrangement.

Title of Topic Topic 1 - 1.7

Connecting to the Database - 1

• For this module, we have created a user with login

and password:

– monke13nccuser with password ncc1

• When creating your own code you will use your

OWN username and password.

• We will use a database called monke13ncc.

• This database is currently empty.

– It has no tables.

– It has no data.

Title of Topic Topic 1 - 1.8

Connecting to the Database - 2

• To make the connection to our MYSQL data, use

the following code:
<?php

$host = “localhost”;

$user = “monke13_nccuser”;

$pass = “ncc1”;

$database = “monkey13_ncc”;

$connection = mysql_connect($host, $user, $pass)

or die (“Couldn’t connect to database”);

?>

Title of Topic Topic 1 - 1.9

Errors

• Depending on the level of reporting in your browser,

you may or may not get meaningful error messages

if this goes wrong.

• However, if you have a problem, then check the

following:

– The host is not correct

– The username does not exist

– The password does not match the user

Title of Topic Topic 1 - 1.10

A Database Connection

• Having made the connection to the server, you

must select the database with which you were going

to work.
<?php

$host = “localhost”;

$user = “monkey13_nccuser”;

$pass = “ncc1”;

$database = “monk13_ncc”;

$connection = mysql_connect($host, $user, $pass)

or die (“Couldn’t connect to database”);

mysql_select_db ($database);

?>

Title of Topic Topic 1 - 1.11

Connection Made

• Once the connection is made, we can start

manipulating our underlying database.

– We do this using standard SQL queries, with which you

should already be familiar.

• First we build a query in a variable, and then we

pass the query and the database connection to a

function called mysql_query.

Title of Topic Topic 1 - 1.12

GET

• Using the GET method, the information that is encoded gets sent as an

extension to the URL.

• It will appear as something like:

http://<url>/dice_roll_get.php?num=6&faces=7

• This information is available to PHP via the $_GET variable.

• This action used to provided data to a PHP form influences the code that

we use to access it.

• We can make use of the GET protocol by changing the action in our form

to GET.

Title of Topic Topic 1 - 1.13

POST

• The POST protocol is most useful on a day-to-day basis.

• POST has no limitations on size of data.

• It has no limitations on data types.

• It works by placing the encoded data in a standard HTTP header.

Title of Topic Topic 1 - 1.14

Limitations of POST and GET

• Both protocols permit you to send data to a PHP script

• That data persists as long as the script is running (if the page is reloaded

it will usually ask to resend the data).

• If we move outside of the confines of a single PHP script, we will lose the

data.

• Now lets create the database table ……

Title of Topic Topic 1 - 1.15

Creating a Table 1

$query = “CREATE TABLE test-table (

FirstName varchar (15), SurName varchar (15)

)”;

$ret = mysql_query ($query, $connection);

If ($ret) {

Echo “<p>Table created!</p>”;

}

Else {

Echo “<p>Something went wrong: “ . Mysql_error ();

+ “</p>;

}

Title of Topic Topic 1 - 1.16

Creating a Table 2

• This is a process that can be done only once.

– After that, it will fail saying that the table already exists.

• Mysql_error is a useful function that returns the next of the last MySQL

error that was encountered.

– Databases can be frustrating, so get into the habit of using this for

diagnostic purposes

• Once we have browsed to this PHP page we will have a table in our

database.

– Often this is done as a separate setup.php process

Title of Topic Topic 1 - 1.17

Putting Data in a Table

• Almost all MySQL manipulation is done through the mysql_query

function.

– It will be the primary mechanisms by which you achieve your

objective.

• We can use it to execute any valid SQL:

$query = “INSERT INTO test_table (FirstName, SurName) values

(\”Michael\”, \”Heron\”)” ;

$ret = mysql_query ($query, $connection);

If ($ret) {

echo “<p>Data Inserted!</p>”;

}

Else {

echo “<p>Something went wrong: “ . Mysql_error(); + “</p>”;

Title of Topic Topic 1 - 1.18

Getting Data out of a Database

• Getting data out of a database too is done through queries.

• However, manipulating that data requires us to do some

further process.

• The results come out in the form of an associative array.

• Data can be retrieved using GET or POST as seen above.

Title of Topic Topic 1 - 1.19

Sending of Data to Web Pages

• HTTP permits the sending of data to web pages.

• Two methods for this are:

• GET

• POST

• When it is time to send information, it is encoded by the client

and then sent in one of two ways.

Title of Topic Topic 1 - 1.20

The Associative Array

• Most arrays are indexed with a number.

• Associative arrays are indexed with other kinds of data, such as

descriptive strings.

• They work the same way – the index provides the corresponding

element.

– The index in an associative array is often called a key.

– The element is often called the value.

Title of Topic Topic 1 - 1.21

Manipulating the Results

• The results come out as an array of associative arrays.

– The keys of each associative array are the fields in the database.

– The values are the contents of the database corresponding to those

fields for a record.

• Thus, making use of the data we have queried for the database requires

us to provide handling code in PHP.

Title of Topic Topic 1 - 1.22

Extracting the Data - 1

• PHP gives us a number of helper functions.

– If we want how many records that were returned, we use the

mysql_num_rows function.

• This is valuable information we will need if we are to perform operators

on each of the records that were returned.

• The function takes the results of a query as a parameter, and gives an

integer in return.

Title of Topic Topic 1 - 1.23

Extracting the Data - 2

<?php

$host = “localhost”;

$user = “monkey13_nccuser”;

$pass = “ncc1”;

$database = “monk13_ncc”;

$connection = mysql_connect($host, $user, $pass)

or die (“Couldn’t connect to database”);

mysql_select_db ($database);

$query = “SELECT * FROM test_table”;

$ret = mysqul_query ($query, $connection);

$num_results = mysqul_num_rows ($ret);

echo “<p>There were $num_results results returned from the query.</p>”;

?>

Title of Topic Topic 1 - 1.24

Extracting the Data - 3

• We have two main ways of getting to the actual data.

– Through the mysql_result function

– Through the mysql_fetch_array function.

• With the former, we provide the results, the index of the specific row we

wish to query and the field we wish to query:

$num_results = mysql_num_rows ($ret);

$name = mysql_result ($ret, 0 “FirstName”);

Echo “<p>There were $num_results results returned from the query”.

“, and the first FirstName was $name</p.”;

Title of Topic Topic 1 - 1.25

Fetching a Row - 1

• The results set we get from the query contains each of the rows, but it

also contains an internal counter of the last row for which we asked.

– We can use mysql_fetch_array to fetch each row in order.

– Each call to the function increments the counter by one.

• We can use this to perform manipulation or output on each row of the

results one by one.

Title of Topic Topic 1 - 1.26

Fetching a Row - 2

Echo “<table width = \”100%\”>”;

Echo “<tr>”;

Echo “<th align = \”left\”>Record</th>”;

Echo “<th align = \”left\”>First Name</th>”;

Echo “<th align = \”left\”>Surname</th>”;

Echo “</tr>”;

For ($i = 0; $i <$num_results; $i++) {

$row = mysql_fetch_array ($ret);

Echo “<tr>”;

Echo “<td>$i</td>”;

Echo “td>” . $row[“FirstName”] . “</td>”;

Echo “td>” . $row[“SurName”] . “</td>”;

Echo “</tr>”;

}

Echo “</table>”;

Title of Topic Topic 1 - 1.27

User Input - 1

• We can incorporate user input using the techniques we have

learned so far.
<html>

<head>

<title>Database Form</title>

</head>

<body>

<form action = “database_search.php” method = “POST”>

<p>First Name</p>

<input type = “text” name = “firstname”>

<p>Surname</p>

<input type = “text” name = “surname”>

<input type = “submit” value = “Search that Data”>

<input type = “reset” value = “Clear values”>

</body>

</html>

Title of Topic Topic 1 - 1.28

User Input - 2

• We can incorporate user input into queries into the same way we can

into regular output:

$firstname = $_POST["firstname"];

$surname = $_POST["surname"];

$query = "SELECT * from test_table WHERE FirstName = \"$firstname\"

OR SurName = \"$surname\"";

$ret = mysql_query ($query, $connection);

$num_results = mysql_num_rows ($ret);

Title of Topic Topic 1 - 1.29

SQL Injection - 1

• Whenever we insert text from a user into a query, we run the

risk of an SQL injection attach.

– When someone incorporates their own SQL into their

form input.

• Many browsers help combat this now by automatically

sanitizing some of the input.

– However, not all do, and not all PHP access will come

via a browser.

• You should sanitise all user data using the

mysql_real_escape_string()function.

Title of Topic Topic 1 - 1.30

Sanitised Input

• $firstname = $_POST[“firstname”];

• $surname = $_POST[“surname”];

• $firstname = mysql_real_escape_string ($firstname);

• $surname = mysql_real_escape_string ($surname);

• $query = “SELECT * from test_table WHERE

• FirstName = \”$firstname\” OR SurName = \”$surname\””;

• $ret = mysql_query ($query, $connection);

Title of Topic Topic 1 - 1.31

MySQL and PHP - 1

• A proper treatment of how SQL can be used to query a

MySQL database is outside the scope of this module.

– However you will have encountered it in previous

modules.

• There are often two ways to accomplish any given data

retrieval task using these tools.

– A broad query with heavy PHP processing

– A specific query with little PHP process

Title of Topic Topic 1 - 1.32

MySQL and PHP - 2

• With judicious use of joins, ordering and grouping by, you

can create very sophisticated SQL queries.

– These queries are often large and unwieldy.

– However, MySQL is a platform designed for very

efficient storage and retrieval of large amounts of data.

• PHP allows you to query a broad data set (such as select *

from <table>) and then manually manipulate it for meaning.

– This is inefficient, but can be useful for very fine detail

work.

Title of Topic Topic 1 - 1.33

MySQL and PHP - 3

• In all cases, you must be mindful of several things:

– Efficiency of data access

– Readability of your code

– Maintainability of your code

– Portability of your architecture

• You want to make MySQL do as much of the work as it can.

– However if you have to contort your queries to accomplish a simple

goal, PHP can be a more effective tool.

Title of Topic Topic 1 - 1.34

Web Development Frameworks

• Web development frameworks are software frameworks that

are designed to support wed applications development.

• Web development framework makes it easier to write,

maintain and scale web applications.

• Web development framework provide tools and libraries that

simplify common web development tasks e.g. interacting

with databases, supporting sessions and user authorization,

and etc.

• 2 examples of web development frameworks:

• ASP.NET

• RubyonRails

Title of Topic Topic 1 - 1.35

Ruby on Rails - 1

• Ruby on rails is a software programme that is

designed as a framework for web development.

– It is based on Ruby software

– It is fun

– It allows you to write less code

– It is designed so that when you are writing code you

don’t have to repeat yourself

– Convention over configuration is the preferred method of

coding.

Title of Topic Topic 1 - 1.36

Ruby on Rails - 2

The Hello Class

class Hello

def initialise(name)

@name = name.capitalise

end

def salute

puts "Hello #{@name}!"

end

end

Create a new object

h = Hello.new(“Andy")

Output "Hello Andy!"

h.salute

Title of Topic Topic 1 - 1.37

Conclusion

• PHP offers integrated support for MySQL and other

databases.

– MySQL is the one we use throughout this module.

• PHP and MySQL integration is handled via the use of

queries.

– The data that comes back from a MySQL query can be

further refined by PHP as needed.

• It is important to sanitise the input we receive from a user.

– Or we risk SQL injection attacks.

Title of Topic Topic 1 - 1.38

Terminology

Associative Array - An array which is indexed by data types (usually

strings) other than just integers.

SQL Injection - A (often malicious) piece of SQL that is provided by

the user to influence the result of a query.

Sanitization - The process of taking potentially suspect user input

and converting into a form that will not be harmful for database

queries.

Ruby on Rails – web framework that is built on Ruby programming

language.

Title of Topic Topic 1 - 1.39

References

• Rubyonrails, 201. [online] Available at:

http://guides.rubyonrails.org/getting_started.htm

http://guides.rubyonrails.org/getting_started.htm

Topic 5 – Design and Build a Database (2)

Any Questions?

