

Bringing British Education to You www.nccedu.com

Foundation Mathematics

Topic 8 – Lecture 2: Understanding Dispersion

The Variance The Standard Deviation

Scope and Coverage

This topic will cover:

- Recognition of the variance within the distribution of data and its importance in statistics
- Recognition of the standard deviation within the distribution of data and its importance in statistics

Bringing British Education to You www.nccedu.com

Learning Outcomes

By the end of this topic students will be able to:

- Calculate the variance of a set of data
- Calculate the standard deviation of a set of data

Bringing British Education to You www.nccedu.com

The Variance - 1

- We present the difference between the individual value and the arithmetic mean in straight line brackets $|x \overline{x}|$ called a **modulus**.
- We must remember to ensure that the product of our calculation within the modulus remains positive.
- To get around this we can square the value of $x \overline{x}$ that is to multiply the value by itself which will always give a positive number.
- If we do this we can replace the straight line (modulus) brackets with the more conventional curved brackets ()

Bringing British Education to You www.nccedu.com

The Variance - 2

- The resulting measure that is achieved when we square values of x \bar{x} is referred to as the **variance**.
- For ungrouped data it can be represented by the formula

$$\frac{\sum (x - \overline{x})^2}{n}$$

Bringing British Education to You www.nccedu.com

 Σx

п

The Variance - Example

- Consider the following data set 8, 10, 12, 14, 16, 18, 20, 22
- The first thing to do is to calculate the arithmetic mean using X
- Once we have this we can apply the following formula to calculate our variance

X	$(x-\overline{x})$	$(x-\overline{x})^2$
8	-7	49
10	-5	25
12	-3	9
14	-1	1
16	1	1
18	3	9
20	5	25
22	7	49
Total		168

 $\sum (x - \overline{x})^2$ n

= <u>168</u> = 21 8

Bringing British Education to You www.nccedu.com

The Variance – Grouped Data

• The same approach can be applied to calculating the variance for group data. This time (as before) we need to find the mid point of our class.

Hours worked	Frequency
0 <h≤ 10<="" td=""><td>3</td></h≤>	3
10 <h≤ 20<="" td=""><td>6</td></h≤>	6
20 <h≤ 30<="" td=""><td>11</td></h≤>	11
30 <h≤ 40<="" td=""><td>15</td></h≤>	15
40 <h≤ 50<="" td=""><td>12</td></h≤>	12
50 <h≤ 60<="" td=""><td>7</td></h≤>	7
60 <h≤ 70<="" td=""><td>6</td></h≤>	6

• Constructing our table we get

Midpoint x	Frequency f	fx	X ²	fx ²
5	3	15	25	75
15	6	90	225	1350
25	11	275	625	6875
35	15	525	1225	18375
45	12	540	2025	24300
55	7	385	3025	21175
65	6	390	4225	25350
	Σ f = 60	2220		Σfx ² = 97500

The Variance – Example Continued

• From this table we can now extract the information we need to put into our formula

$$S^{2} = \frac{\sum fx^{2}}{\sum f} - \left[\frac{\sum fx}{\sum f}\right]^{2}$$

We then get the following

$$\frac{97500}{60} - [37]^2 = 256 hours$$

• The mean is calculated using $x = \frac{\sum fx}{\nabla f} = 37$

The Standard Deviation - 1

- Although the variance allows us to analyse data in an effective way, it is presenting data in squared units as the variance is expressed as s².
- It is necessary to present our data more often than not in single units.
- To achieve this we need to introduce the standard deviation as a way of demonstrating the relationship between the arithmetic mean and individual values.
- The calculation of the standard deviation is very simple and is the square root of the variance.

The Standard Deviation - 2

- In our previous example of how we calculated the variance of the hours worked we established that this = 256 hours
- The standard deviation of this data set is $\sqrt{256}$ or 16 hours
- The main properties of the standard deviation are as follows
 - It is based on all the values in the distribution and so is more comprehensive than dispersion measures based on quartiles
 - It is suitable for further statistical analysis

Coefficient of Variation

 The coefficient of variation compares the dispersion of two distributions and is simply calculated by the following formula

Coefficient of variation =

Standard deviation

Mean

V1 0

Bringing British Education to You www.nccedu.com

Topic 8 – Understanding Dispersion 2

Any Questions?

Bringing British Education to You www.nccedu.com

