

Bringing British Education to You www.nccedu.com

Mathematical Techniques

Topic 5 – Lecture 3: Introduction to Integral Calculus Applying Integral Calculus

Scope and Coverage

This topic will cover:

• Applications of integration to find the area under a curve

Bringing British Education to You www.nccedu.com

Learning Outcomes

By the end of this topic students will be able to:

• Apply integral calculus to solve a range of mathematical problems relating to the area under a curve

- We have looked so far at calculating the area under a curve and the area bound between a straight line and a curve. Both of these can be calculated by applying integral calculus.
- Other applications of integration also include calculating
	- Distance Travelled
	- Velocity of a moving object
	- Acceleration of a moving object
- It is also possible to calculate the volume of complex shapes using integration

Bringing British Education to You www.nccedu.com

Velocity, Acceleration & Distance

When we looked at differentiation we were able to determine that if an object travels s metres in a time of t seconds then the velocity (v) of the body can be expressed in terms of

$$
V=\frac{ds}{dt}
$$

This equation can however be expressed through integration to determine the distance travelled by an object in relation to time and velocity.

This equation is given as $s = \int v dt + c$

Bringing British Education to You www.nccedu.com

Velocity and Acceleration

This approach can also be applied to determine the velocity of an object in respect of its acceleration.

If we consider that the acceleration of a body is expressed as

$$
a = \frac{dv}{dt}
$$

Then we can integrate to find the velocity by $v = \int a \, dt + c$

If we plot relationships graphically we find that the area under a **velocity-time graph** represents the distance travelled by an object.

Bringing British Education to You www.nccedu.com

Velocity and Acceleration

The area under an **acceleration time graph** represents the velocity of the object.

Areas under curves – a job for integration.

Bringing British Education to You www.nccedu.com

• Example

- The velocity of a body, v metres per second, after a time t seconds is given by $v = t^2+1$. Find the distance travelled at the end of 2 seconds.
- When $t = 0$ the distance travelled will be 0 metres.
- Hence the distance travelled at the end of 2 seconds is found by integrating the expression for v between the limits of 2 and 0.
- This now gives us a means of expressing the information as an equation.

Bringing British Education to You www.nccedu.com

Remember our equation for velocity given as $v = \frac{v}{l}$ can be represented in terms of distance (s) by integration *dt ds v*

$$
s = \int v \, dt + c
$$

Our equation for velocity $v = t^2 + 1$ now becomes $s = \int_0^2 (t^2 +$ Therefore we can perform integration using the limits of 0 and 2 to calculate distance travelled 2 0 $s = \int_{0}^{2} (t^2 + 1) dt$

$$
\left[\frac{t^3}{3} + t\right]_0^2 = \frac{2^3}{3} + 2 = 4\frac{2}{3}
$$
 metres

Example

The acceleration of a moving body at the end of t seconds from the commencement of motion is $(9 - t)$ metres per second.

Find the velocity and the distance travelled at the end of 2 seconds if the initial velocity is 5 metres per second.

As we know that the equation for acceleration is $v = \int a \; dt + c$

Then we can express acceleration as $\int (9-t)dt + c$

Bringing British Education to You www.nccedu.com

By doing so it is then possible through integration to get the

following equation for the velocity
$$
v = \int 9t - \frac{t^2}{2} + c
$$

The initial velocity is the velocity when $t = 0$. However in order to calculate velocity we first need to calculate the constant of integration.

Hence when $t = 0$, $v = 5$

Therefore $5 = 9 \times 0 - 0 + c$ or put another way $c = 5$

Our equation for velocity is therefore
$$
v = 9t - \frac{t^2}{2} + 5
$$

Bringing British Education to You

When $t = 2$, $v = 9 \times 2 - \frac{2}{3} + 5 = 21$ metres per second 2 $2²$ $\overline{+}$

Given that distance $s = \int v \, dt = \int (9t - \frac{1}{2} + 5) dt + c$ *t* $t - \frac{1}{2} + 5$) 2 (9 2

Integrating gives
$$
\frac{9t^2}{2} - \frac{t^3}{6} + 5t + c
$$

Unless information is given to the contrary it is always assumed that $s = 0$ when $t = 0$ therefore $c = 0$

Bringing British Education to You www.nccedu.com

As distance $s = \frac{h}{2} - \frac{h}{s} + 5t$ t^2 *t* 5 2 6 $9t^2$ t^3 $-\frac{v}{2}+$

When $t = 2$, we can substitute into the equaton and calculate our distance

$$
s = \frac{9 \times 2^2}{2} - \frac{2^3}{6} + 5 \times 2 = 26\frac{2}{3}
$$
 metres

Solids of Revolution

- As we know from our previous experience of integration we can use this technique to calculate the area under a curve.
- If the area under a curve is rotated about the xaxis, the solid which results is called a solid of revolution. Any section of this solid by a plane perpendicular to the x-axis is a circle.

Solids of Revolution

This diagram illustrates that if we rotate the shape formed by The area under the curve we get a solid of revolution

x

When a curve is rotated about the x-axis the volume of the solid of revolution so produced can be expressed as $\int_a^b \pi y^2 dx$

y

- Once this relationship is established it is possible to calculate the volume of a range of solid objects that would otherwise be very difficult or impossible to do.
- Example
	- The area between the curve $y = x^2$, the x-axis and the ordinates at $x = 1$ and $x = 3$ is rotated about the x-axis.
	- Calculate the volume of the solid generated.

As we are already in possession of the equation for calculating the volume of a solid of rotation and also have our upper and lower limits $(x = 1$ and $x = 3)$ it is simply a process of integration using these limits, thus:

$$
v = \int_1^3 \pi y^2 dx = \int_1^3 (x^2)^2 dx = \int_1^3 x^4 dx
$$

We can now calculate the volume by applying the limits

$$
\pi \left[\frac{x^5}{5} \right]_1^3 = \pi \left[\frac{243}{5} - \frac{1}{5} \right] = 48.4\pi
$$
 cubic units

Bringing British Education to You www.nccedu.com

Topic 5 - Introduction to Integral Calculus 3

Any Questions?

Bringing British Education to You www.nccedu.com

