

Bringing British Education to You www.nccedu.com

Foundation Mathematics

Topic 3 - Lecture 2: Solving algebraic equations using graphs

Presenting quadratic equations in graphical form Solving simultaneous equations using graphs

Scope and Coverage

This topic will cover:

- The presentation of quadratic equations as graphs
- Solving simultaneous equations using graphs

Bringing British Education to You www.nccedu.com

Learning Outcomes

By the end of this topic students will be able to:

- Present a range of quadratic equations in graphical form
- Solve simultaneous equations using graphs

Bringing British Education to You www.nccedu.com

Solving Algebraic Equations using Graphs 2 Topic 3 - 2.(#)

Drawing Graphs of Quadratic Equations - 1

- $ax^2 + bx + c$ where a, b and c are constants is a quadratic function of X
- When plotted, quadratic functions always give a smooth curve known as a *parabola* (or a *parabolic curve*)

• Example

- Plot the graph of $y = 3x^2 + 10x 8$ between x=-6 and x=4
- As we have done before it is easiest to set out a table of values for x and then calculate the corresponding values for y
- Therefore for our range of x values we get:

x	-6	-5	-4	-3	-2	-1	0	1	2	3	4
3x ²	108	75	48	27	12	3	0	3	12	27	48
10x	-60	-50	-40	-30	-20	-10	0	10	20	30	40
-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
у	40	17	0	-11	-16	-15	-8	5	24	49	80

Remember we only plot values of x against y

Bringing British Education to You www.nccedu.com

By plotting our values of x against those calculated for y we get the following graph:

Quadratic graphs always give this curved shape.

Bringing British Education to You www.nccedu.com

V1.0

- By understanding how we can plot information on a graph it is possible to solve quadratic equations using this method. This can provide a useful way of solving equations and presenting information in accessible ways.
- Example:

Plot the graph of $y = 6x^2 - 7x - 5$ between x=-2 and x=3. And therefore solve the equation $6x^2 - 7x - 5 = 0$

 We can of course solve the equation by factorising but graphs can be more fun

- Example continued:
- The first thing we need to do is to set up our table of values

X	-2	-1	0	1	2	3	
У	33	8	-5	-6	5	28	

• To solve the equation $6x^2 - 7x - 5 = 0$ we have to find the values of x when y=0. That is, we have to find the values of x where the graph cuts the x-axis

Bringing British Education to You www.nccedu.com

V1.0

• The graph of our equation appears as:

 Once we have our graph it is easy to see the points on the graph when y = 0. These are shown by points A and B. We can then read the corresponding numerical value on the x axis.

Therefore the values of x are x = -0.5 or x = 1.76

Bringing British Education to You www.nccedu.com

V1.0

- Although it is possible to solve simultaneous equations using techniques discussed in our previous unit, it is also possible for this to be achieved using graphs.
- This approach will be illustrated by example:
- To simplify these expressions
- Equation 1 can be written as y = 2 + 2x
- Equation 2 can be written as $y = \frac{20-x}{3}$

Bringing British Education to You www.nccedu.com

V10

 By placing information into a table (as we have done for single equations) we can plot the two equations on the same axes.

X	-3	0	3
y = 2 + 2x	-4	2	8
$y = \frac{20 - x}{3}$	7.7	6.7	5.7

 Now that we have this information we can plot both values of y against x on the same graph

V1.0

 The solutions of the equations are the co-ordinates of the point where the two lines cross

As we can see the graphs **intersect** at the point where x = 2and where y = 6

- The solutions for the equations
 - y 2x = 2(1) 3y + x = 20(2)
- Are x = 2 and y = 6
- To check this we can substitute values into our equations
- From equation 1 we get
 - $6 2 \times 2 = 2$ which is correct
- From equation 2 we get
 - 18 + 2 = 20which is correct

- A further example:
- Draw the graph of y = (3+2x)(3-x) for values of x from $-1\frac{1}{2}$ to 3
- On the same axes, and with the same scales, draw the graph of 3y = 2x + 14
- From your graphs determine the values of x for which 3(3+2x)(3-x) = 2x+14

• To plot the graph of y = (3+2x)(3-x) we draw up the following table

X	-1½	-1	-1/2	0	1/2	1	11/2	2	21/2	3
y = (3+2x)(3-x)	0	4	7	9	10	10	9	7	4	0

- The equation 3y = 2x + 14 may be written as $y = \frac{2x+14}{3}$
- To draw this graph we need only take three points since it is a linear equation.

Plotting values for the equation $y = \frac{2x+14}{3}$ requires us to prepare a table of values

Now that we have the values for both our equations we may plot these graphically

Plotting the graph of our equations gives us the following shape:

Bringing British Education to You www.nccedu.com

- Since we were asked to find the co-ordinates of x when the equation 3(3+2x)(3-x) = 2x+14
- Remember this equation may be written as

$$(3+2x)(3-x) = \frac{2x+14}{3}$$

• The co-ordinates where the curve and the line intersect therefore give us the values when

$$(3+2x)(3-x) = \frac{2x+14}{3}$$

• And thus give the solutions which are x = -1 and x = 2.17

Bringing British Education to You www.nccedu.com

Topic 3 – Solving Algebraic Equations using Graphs 2

Any Questions?

Bringing British Education to You www.nccedu.com

