

Bringing British Education to You www.nccedu.com

Skills for Computing

Topic 11: Regression Analysis

Learning Outcomes for this Topic

- By the end of this topic, students should be able to:
 - Understand and use simple linear regression
 - Understand and use Pearson's (product moment) correlation coefficient
 - Understand and use Spearman's (rank order) correlation coefficient

V1.0

Learning Outcomes

By the end of this topic students will be able to:

- Understand a straight line fit to bivariate data
- Calculate and interpret Pearson's correlation coefficient
- Calculate and interpret Spearman's correlation coefficient

V1.0

Motivation

- The search for, and strength of, predictors
 - What is a good predictor of future job performance?
 - What is this product's price-demand curve?
 - Which process factors affect production yield?
 - How does a particular share price move with the market average?

Bringing British Education to You www.nccedu.com

The Linear Relationship

assuming interval or ratio data.

V1.0

Education to You vww.nccedu.com

Least SSE Regression Criterion

X

 $y_{i} = mx_{i} + c + e_{i} + e_{5}$

• $y_i = mx_i + c + e_i$

• The least squared line is the line that <u>minimizes the</u> <u>sum of square errors</u> $e_1^2 + e_2^2 + \dots + e_n^2$

•
$$\hat{y} = mx_i + c$$

NCC education B E

Bringing British Education to You www.nccedu.com

Least SSE Regression Criterion

 For the least SSE straight line, $\hat{y} = mx_i + c$

• m =
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

• c = \overline{y} - m \overline{x}

X

V1.0

Least SSE Regression Criterion

- For the least SSE straight line, $\hat{y} = mx_i + c$
- For the least SSE straight line, $\hat{y} = mx_i + c$

• m =
$$\frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

• m =
$$\frac{\Sigma(x_{i} - \overline{x})(y_{i} - \overline{y})}{\Sigma(x_{i} - \overline{x})^{2}}$$

• $c = \overline{y} - m\overline{x}$

•
$$c = \overline{y} - m\overline{x}$$

V1.0

Bringing British Education to You www.nccedu.com

Example

 A company has been carrying out experiments with the position of a button on its website.

Page Position (% vertical)	Click Throughs (%)
25	3.07
50	5.64
75	9.63
100	10.26

Example

• A company has been carrying out experiments with the position of a button on its website.

r

	x	× y ×	ху	X ²
	25	3.07	76.75	625
	50	5.64	282.00	2500
	75	9.63	722.25	5625
	100	10.26	1026.00	10000
total	250	28.6	2107	18750
mean	62.5	7.15		

$$m = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$n = \frac{\{(4 \times 2107) + (250 \times 28.6)\}}{\{(4 \times 18750) - (250 \times 250)\}}$$

m = 0.10224, c = $\bar{y} - m\bar{x}$

 $c = 7.15 - (0.10224 \times 62.5) = 0.76$

Bringing British Education to You www.nccedu.com

Example

 A company has been carrying out experiments with the position of a button on its website.

Page Position (% vertical)	Click Throughs (%)
25	3.07
50	5.64
75	9.63
100	10.26

Exercise

 A company has been carrying out experiments with the position of a button on its website.

m

	x	y	ху	X ²
	25	1.44		5
	50	5.58		2500
	75	14.64		5625
	100	6.94		10000
total	250			18750
mean	62.5			

$$= \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

$$c = \overline{y} - m\overline{x}$$

Education to You ww.nccedu.com

Exercise

• A company has been carrying out experiments with the position of a button on its website.

	x	y	ху	X ²
	25	1.44	36	5
	50	5.58	279	2500
	75	14.64	1098	5625
	100	6.94	694	10000
total	250	28.6	2107	18750
mean	62.5	7.15		

$$m = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2} = 0.10224$$

$$c = \bar{y} - m\bar{x} = 0.76$$

V1.0

Bringing British Education to You www.nccedu.com

How Well Does the Line Fit?

0

0

25

50

75

100

x	У
25	3.07
50	5.64
75	9.63
100	10.26

x	У
25	1.44
50	5.58
75	14.64
100	6.94

Bringing British Education to You www.nccedu.com

How Well Does the Line Fit?

• Total variation in two parts $\sum (y - \bar{y})^2 = \sum (y - \hat{y})^2 + \sum (\hat{y} - \bar{y})^2$

- Total = unexplained + explained
- Fraction of the variation explained by the line

•
$$R^2 = r^2 = \frac{\Sigma(\widehat{y} - \overline{y})^2}{\Sigma(y - \overline{y})^2}$$

Bringing British Education to You www.nccedu.com

Pearson Correlation

- R² or r² is called the coefficient of determination
- $0 \le r^2 \le 1$
- r is called the Pearson correlation coefficient
- $-1 \le r \le 1$
- Following rearrangement

$$\mathsf{R} = \mathsf{r} = \frac{\mathsf{n} \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{\sqrt{(\mathsf{n} \sum x_{i}^{2} - (\sum x_{i})^{2})(\mathsf{n} \sum y_{i}^{2} - (\sum y_{i})^{2})}}$$

V1.0

Bringing British Education to You www.nccedu.com

How Well Does the Line Fit?

$$R = r = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{\sqrt{\left(n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}\right)\left(n \sum y_{i}^{2} - \left(\sum y_{i}\right)^{2}\right)}}$$

x	У	ху	X ²	У ²
25	3.07	76.75	625	9.425
50	5.64	282.00	2500	31.810
75	9.63	722.25	5625	92.737
100	10.26	1026.00	10000	105.268
250	28.6	2107	18750	239.239

Bringing British Education to You www.nccedu.com

How Well Does the Line Fit?

Bringing British Education to You www.nccedu.com

Language of Correlation

- Sign
 - r > 0 positive linear relationship
 - r = 0 no linear relationship
 - r < 0 negative linear relationship
- Strength
 - Physical sciences / engineering $R^2 > 0.6$ often found
 - Social sciences / policy $R^2 > 0.25$ sometimes useful
 - Business and management includes science & social science!
 - But you will see language like R² > 0.8 strong, R² > 0.5 moderate, R² > 0.25 weak relationship
 - Be careful; context and numbers often more informative than descriptive word, but words help to communicate.

Regression Analysis – Topic 11 - 1.20

V1.0

Interpolation and Extrapolation

- Interpolation Estimates between values already known
- Extrapolation Estimates outside known values

Bringing British Education to You www.nccedu.com

Basics of Simple Linear Regression

- Plot scatter graph to intuit whether straight line is reasonable
- Look at $r^2 = R^2$ for strength of relationship
- Look at sign of r for direction
 - Check agrees with graph
- Look at m for gradient of relationship
- Use straight line equation to interpolate (with care)
- Use straight line equation to extrapolate (with caution)

Spearman's Rank Correlation

- Sometimes we only have ordinal data
 - two interviewers rank candidates
- Can we still define a correlation function? Yes

•
$$r_s = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$$

- where d is the difference between ranking.

Spearman's Correlation - Example

 Two interviewers individually rank prospective job candidates. What is the Spearman correlation coefficient?

Candidate	Interviewer 1	Interviewer 2	
Hidayat	3	E	
Elisa	2	A	
Nouman	1	В	
Bernie	4	С	
Li Ren	5	D	
Ahere	6	F	

Bringing British Education to You www.nccedu.com

Spearman's Correlation - Example

 Two interviewers individually rank prospective job candidates. What is the Spearman correlation coefficient?

Candidate	Interviewer 1	Interviewer 2	d	d²
Hidayat	3	₩ 5	-2	4
Elisa	2	A 1	1	1
Nouman	1	₽2	-1	1
Bernie	4	G 3	1	1
Li Ren	5	₽4	1	1
Ahere	6	₽ 6	0	0

•
$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{8}{35} = 0.771$$

Spearman Correlation - Ties?

- · For tied ranks use mean rank, then
- Use formula for Pearson correlation

Candidate	Interviewer 1	Interviewer 2
Hidayat	3	OK
Elisa	2	Excellent
Nouman	1	Good
Bernie	4	OK
Li Ren	5	ОК
Ahere	6	Poor

Bringing British Education to You www.nccedu.com

Recap

By the end of this topic students will be able to:

- Understand a straight line fit to bivariate data
- Calculate and interpret Pearson's correlation coefficient
- Calculate and interpret Spearman's correlation coefficient

Bringing British Education to You www.nccedu.com

Bibliography

- Burton, G., Carrol, G. and Wall, S. Quantitative *Methods for Business and Economics*. Longman.
- Buglear, J. Quantitative Methods for Business. Elsevier Butterworth Heinemann
- Hinton, PR. Statistics Explained. Routledge

V1.0

Topic 11 – Regression Analysis

Any Questions?

