
Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 1

© NCC Education Limited

Analysis, Design and Implementation
Topic 12:
Maintenance and Refactoring

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:
• Types of maintenance activity
• Issues of Refactoring
• Refactoring Examples

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:
• Identify different categories of maintenance activity
• Identify the need for refactoring
• Refactor methods and classes

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 2

Title of Topic Topic 1 - 1.4

Introduction

• An element of implementation that is often
overlooked is that of maintenance.

– Writing the software is only part of the job.
– The other part is maintaining it.

• Much developer time is spent maintaining software.
– More than is spent writing it the first time, although the

exact ratios vary from study to study.
• Sometimes the maintenance is done by a different

team.
– But more often than not it will be you who has to do it.

Title of Topic Topic 1 - 1.5

Types of Maintenance

• The way in which maintenance is applied to a
software system falls into four categories:

– Adaptive Maintenance
– Corrective Maintenance
– Perfective Maintenance
– Preventive Maintenance

• The largest amount of time is spent on the first two
of these.

– These are the highest gain, and so more attractive
when time and money is limited.

Title of Topic Topic 1 - 1.6

Adaptive Maintenance

• Adaptive maintenance is being performed when
software is changed to meet changed requirements.

– Adjusting software to be compliant with new regulations.
– Adding support for a new protocol
– Alterations in an internal organisation workflow.

• Adaptive maintenance does not include new features.
– It is to keep a system up to date with changing requirements.

• This is a reactive maintenance process.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 3

Title of Topic Topic 1 - 1.7

Corrective Maintenance

• Corrective maintenance involves identifies defects
in software and then resolving them.

– Many bugs in a system will not be discovered until
people have started using it.

• Corrective maintenance is the ongoing process of
performing triage on bug-reports, implementing
corrections, and then integrating them in to the
system.

– This can be a complex task, especially in mission and
safety critical systems.

Title of Topic Topic 1 - 1.8

Perfective Maintenance

• Perfective maintenance aims to enhance a system
with new features and functionality.

– Usually in response to user requests, but not always.
• It too is a reactive maintenance process.
• It can also include performance enhancements.

– Increases in efficiency
– Increases in reliability

• This phase usually includes some degree of
refactoring.

Title of Topic Topic 1 - 1.9

Preventive Maintenance

• Preventive maintenance involves identifying
problems before they occur and re-engineering so
they don’t.

– This can involve refactoring and restructuring of a
system.

• We often know where, architecturally, a system is
likely to have problems in the future.

– We can put off fixing these problems until later in the
development if ‘good enough’ is good enough.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 4

Title of Topic Topic 1 - 1.10

Reactoring

• A big part of what ongoing maintenance involves is
known as refactoring.

– In its simplest terms, this is the process of turning bad
code into good code.

• Ideally, refactoring is an invisible process.
– If you do it right, no-one using the software should know

you’ve done it.
• Refactoring is often a precursor to other kinds of

maintenance.
– It’s about make it easier to work with software code,

Title of Topic Topic 1 - 1.11

Impact of Change

• Maintenance is often made easier or more difficult
by the impact of change that goes with altering
code.

– Much of what software engineering is about is
managing the impact of change.

• Highly coupled objects have a high impact of
change.

– If you make a change, you often need to make
alterations to the objects that make use of it.

Title of Topic Topic 1 - 1.12

Impact of Change

• Encapsulation limits the impact of change through
the mechanism of data hiding.

– The impact of change of a private attribute or method is
limited to that one class.

• Public APIs (such as exposed by a facade) have a
high impact of change.

– You can’t modify them without concern for all the
classes and objects that may be making use of them.

• Impact of change is a measure for how developer
intensive a modification will be.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 5

Title of Topic Topic 1 - 1.13

Impact of Change

• Impact of change relates to the maintainability of
your code.

– How much of the code do you have to change when you
make a modification?

• As developers, we strive to ensure minimum impact
of change.

– You need to labour under the assumption that if
someone has access to a method or variable, they
have taken advantage of that.

• No matter how obscure the method or variable may be.

Title of Topic Topic 1 - 1.14

Rules for Refactoring

• There are some firm rules that must be followed when
refactoring:

– Methods and variables may be made more visible. They may
not be made less visible.

– The functionality of public methods cannot change. If a public
method does X, it should continue to do X (and nothing more
or less) after it has been refactored.

– The return type of a method cannot change
– The name of a method or public/protected variable cannot

change.
– The parameter list of a method must remain the same, or

there must be a translation scheme in place for a change

Title of Topic Topic 1 - 1.15

Breaking the Rules

• You can however choose to break these rules if
you have the authority to make changes throughout
all affected parts of the system.

– Provided you take the responsibility for fixing all the
problems you cause.

• Breaking the rules can also be permitted when
enough notice is given.

– Announce your intention to change a part of the system.
– Give people time to make the changes
– Deprecate the existing code.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 6

Title of Topic Topic 1 - 1.16

Refactoring

• Refactoring may involve a wide range of activities,
but the process usually includes:

– Removing dead code
– Making inefficient code more efficient
– Making code more readable
– Making code more maintainable.

• Refactoring should be a proactive process.
– It should be an ongoing part of your development cycle.

• It often isn’t.

Title of Topic Topic 1 - 1.17

Common Refactoring Tasks

• Some common structural tasks performed during
refactoring:

– Generalising object functionality
• Moving a method from one class to a more general parent.

– Specialising object functionality
• Moving general functionality into a more specialised child.

– Improving encapsulation
• Relocating data while deprecating obsolete calls

– Lower the impact of change
• Modifying access permissions while ensuring compatibility.

Title of Topic Topic 1 - 1.18

Common Refactoring Tasks

• There are also refactoring tasks at the level of an
object and method:

– Simplifying internal structures
– Improving variable names
– Simplifying logical comparisons
– Substituting one algorithm for another
– Consolidating conditionals
– Extracting functionality into separate methods
– Reducing inconsistency in naming and parameter

ordering.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 7

Title of Topic Topic 1 - 1.19

A Simple Example

• Consider the following simple class.
public class Example {
private int bing;

public int getValue() {
return bing;

}

public void setValue (int b) {
bing = b;

}
}

Title of Topic Topic 1 - 1.20

A Simple (?) Example

• Depending on the impact of change, even
changing a variable name can be problematic.

public class Example {
public int bing;

public int getValue() {
return bing;

}

public void setValue(int b) {
bing = b;

}
}

Title of Topic Topic 1 - 1.21

Impact of Change

• Structural elements of a system usually carry with
them a high impact of change.

– It’s usually safe to specialise, it’s usually not safe to
generalise.

• In all cases, we want to refactor in such a way that
our changes have limited impact on anyone else.

– Fellow developers, mainly.
– This is a necessary aspect of courteous development

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 8

Title of Topic Topic 1 - 1.22

Another Example

• Let’s say we have a method to which we need to add a
parameter – say we need getValue to accept an integer
parameter:
public class Example {
private int bing;

public int getValue() {
return bing;

}

public void setValue (int b) {
bing = b;

}
}

Title of Topic Topic 1 - 1.23

Another Example

• How do we do this? There are two real choices:
– Add the parameter to the method definition.

• High impact of change – every other class making use of getValue will need to
change.

– Add in an overloaded method.
• Low impact of change.

• However, there’s a trade-off here:
– Adding a parameter may require lots of code to change.
– Adding an overloaded method may reduce internal consistency.

• Incremental adjustments take time to ripple through
a system.

– Deprecated code sometimes takes decades to fix!

Title of Topic Topic 1 - 1.24

Remit of Refactoring

• Where does your remit for refactoring lie?
– It depends on how much of the code for which you are responsible.

• This may extend over a whole program.
• It may extend over a handful of classes.

– You can unilaterally refactor only those elements of the program for
which you have responsibility.

• There are few things more frustrating than finding your
programs no longer work because of someone else’s
refactoring…

• Usually you blame yourself rather than that the context of
your code may have been unilaterally altered.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 9

Title of Topic Topic 1 - 1.25

A Third Example

public class Example {
private int value;

public int makeDesposit (int value, int rate) {
if (value > 100) {
return -1;

}
else if (valid < 0) {
return -1;

}
else {
if (rate < 30) {
value = value * rate;

}
else {
value = value * rate/2;

}
}

return value;
}

}

Title of Topic Topic 1 - 1.26

Code Aesthetics

• The aesthetics of your code are important.
– They are usually a hint at the maintainability.

• However, it’s important not to just discard complicated
code as needing total refactoring.

– Old code may not be ugly.
– It may be battle-scarred.

• However, as you gain in experience and confidence as
a developer, you can generally tell where the bits of
code needing attention lie.

• Everyone has their own way of doing this – you might
investigate the Wodehouse Method of Refactoring
for one interesting example.

Title of Topic Topic 1 - 1.27

Code Aesthetics

• One way to improve the aesthetics is to break
complicated functionality out into separate methods.

– This fulfils a general rule of object oriented programming, in
that each method should have one responsibility only.

• Complicated and nested structures are usually a good
warning sign of the need to refactor.

• Consider where design patterns can help you deal with
complicated data structures.

– Design patterns are ‘good’ solutions to many endemic
problems in software development.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 10

Title of Topic Topic 1 - 1.28

A Third Example – Refactored (1)

public class Example {
public int value;

private bool getValid(int value) {
if (value > 100 || value < 0) {
return false;

}
return true;

}

private int getRate(int rate) {
int rate;

if (rate > 20 && rate < 30) {
rate = value;

}
else {
rate = value / 2;

}

return rate;
}

}

Title of Topic Topic 1 - 1.29

A Third Example – Refactored (2)

public int makeDeposit (int value, int rate) {
int rate;

if (getValid (value) == false) {
return -1;

}

rate = getRate (rate);

value = value * rate;

return value;
}

Title of Topic Topic 1 - 1.30

Refactoring and Test Driven
Development

• Refactoring introduces no new functionality.
– You can thus use the tests you have put in place

previously.
• Having a comprehensive, full test-suite ensures

that your refactored code behaves identically to the
previous code.

– The importance of that in a multi-developer environment
cannot be stressed enough.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 11

Title of Topic Topic 1 - 1.31

When Do We Refactor?

• Refactoring is an ongoing process we do all the time.
– Yeah, right.

• The ideal case is that we refactor our code on a continual
basis. The realities of life dictate that we must prioritise.

– Generally, we refactor code that is actively getting in the way.
– There’s also often a ‘wish list’ we keep as developers of code that we

regret…
• We refactor when code ‘smells bad’

– Code is duplicated across locations.
– There are unjustifiable ‘god objects’
– When cohesion is too low
– When coupling is too high
– When people have been ‘too clever’ for their own good.

Title of Topic Topic 1 - 1.32

Conclusion

• Maintenance is an important aspect of software
development.

• Before we investigate particular maintenance
needs, we often need to refactor code.

• Refactoring is an intensive process.
• Refactoring allows us to re-engineer systems so

that they are amenable to alteration.
• This greatly simplifies our later maintenance

requirements.

Topic 12 – Maintenance and Refactoring

Any Questions?

