
Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 1

© NCC Education Limited

Analysis, Design and Implementation
Topic 9:
Design Patterns (2)

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:
• The Model View Controller design pattern
• The Façade design pattern
• The strategy design pattern
• The Flyweight design pattern

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:
• Make use of the Model-View-Controller design

pattern
• Make use of the Façade design pattern
• Make use of the Strategy design pattern
• Make use of the Flyweight design pattern

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 2

Title of Topic Topic 1 - 1.4

Introduction

• In the last lecture we looked at the concept of
design patterns and examined two particular
patterns available to us.

• In this lecture we are going to look at a range of
other patterns, how they can be used, and why
they are beneficial.

• Patterns cover a wide range of possible situations, and
a good understanding of what is out there is important in
knowing when to use them.

Title of Topic Topic 1 - 1.5

Structural Design Patterns

• All structural patterns derive from two guidelines:
– Isolate variation in classes
– Create a separate class for each variable part of a

model.
• If you have a method that must change dependant

on the type of object it is working with consider
extracting it out and making it a class of its own.

• The first two patterns we’re going to look at are
structural patterns.

– The MVC and the Facade

Title of Topic Topic 1 - 1.6

The Model View Controller

• We have avoided discussing user interfaces thus
far in the module.

• We’ve been waiting for this pattern.
• It is common practice for beginning developers to

embed functionality into the code that handles the
presentation.

– What this does is tightly bind your functionality to the
context in which it is delivered.

• This causes problems later on down the line.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 3

Title of Topic Topic 1 - 1.7

MVC

• The Model View Controller architecture addresses this
by providing a clean separation of roles in a program.

– The Model, which handles the ‘business logic’
– The view, which handles the presentation of the state of the

model to the user
– The controller, which allows for the user to interact with the

model.
• In simple programs, the view and the controller may be

the same class.
• They will be for the purposes of our module, but real world

programs may use separate classes for each.

Title of Topic Topic 1 - 1.8

MVC - Model

• The model defines all the state and functionality of
a system.

– Everything except presenting information to the user.
• The model makes no assumptions with regards to

the view of the data.
– It doesn’t matter to the model if the view is a GUI, a

phone display, or a text interface.
• The model may be represented by a single class.

– More usually, it will be represented by several classes.

Title of Topic Topic 1 - 1.9

MVC - View

• The view handles the presentation.
– It’s the user interface.

• The view has absolutely no code for altering the
state of the system.

– It sends queries to the model, and the model sends the
answers back.

• The only code contained within the view is view-
specific code.

– Turn an array of strings into a combo box, as an
example.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 4

Title of Topic Topic 1 - 1.10

MVC - Controller

• The controller is what provides the user’s ability to
manipulate the system.

– It’s usually represented by the event handlers for the
controls that belong to the view.

• In an ideal world, the controller is an entirely
separate class to the view.

– For small, simple programs this is often over-
engineering.

• The controller defines the ‘stitching’ between the
view and the model.

Title of Topic Topic 1 - 1.11

Value of Decoupling

• Why is it so important we separate out the model from
the view?

– Division of responsibilities allows for parallel development.
• Model best handled by technical teams.
• View best handled by graphical, UI specialists.
• All that teams must agree on is the interface between the different

parts of the system.

• It allows for flexibility of deployment and maintenance.
– A new interface can be ‘bolted on’ with minimal difficulty.

• Especially important now that an application may have web, mobile
and embedded front-ends all working together.

Title of Topic Topic 1 - 1.12

Façade

• When a model is especially complex, it can be
useful to add in an additional pattern to help
manage the external interface of that model.

– That pattern is called a façade.
• A façade sits between the view/controller and

provides a stripped down or simplified interface to
complex functionality.

– There are costs to this though in terms of coupling and
cohesion.

• A façade is another structural pattern.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 5

Title of Topic Topic 1 - 1.13

Façade

• A façade provides significant benefits
– Makes software libraries easier to use by providing

helper methods
• It can be difficult to work out how objects should relate in a

complex class hierarchy.
– Makes code more readable
– Can abstract away from the implementation details of a

complex library or collection of classes.
– Can work as a wrapper for poorly designed APIs, or for

complex compound relationships between objects.

Title of Topic Topic 1 - 1.14

Example – In A Controller

public class FacadeExample {
public SomeOtherClass handleInput (String configInfo) {

return myFacade.doSomeMagic (configInfo);
}

}

public class Facade {
SomeClass one;
SomeOtherClass two;
SomeKindOfConfigClass three;

public SomeOtherClass doSomeMagic (String configInfo) {
three = new SomeKindOfConfigClass (configInfo)
one = new SomeClass (three);
two = one.getSomethingOut ();
return two;

}
}

Title of Topic Topic 1 - 1.15

Façade

• The more code that goes through the façade, the
more powerful it becomes.

– If just used in one place, it has limited benefit.
• Multiple objects can make use of the façade.

– This greatly increases the ease of development and
reducing the impact of change.

• All the user has to know is what needs to go in, and
what comes out.

– The façade hides the rest

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 6

Title of Topic Topic 1 - 1.16

Façade Downsides

• This comes with a necessary loss of control.
– You don’t really know what’s happening internally.

• Facades are by definition simplified interfaces.
– So you may not be able to fully utilize functionality

locked behind one.
• Facades increase structural complexity.

– It’s a class that didn’t exist before.
• Facades increase coupling and reduce cohesion.

– They often have to link everywhere, and the set of
methods they expose often lack consistency

Title of Topic Topic 1 - 1.17

The Strategy Pattern

• The strategy pattern is used to decouple the
implementation from the context.

– A somewhat esoteric pattern, but extremely powerful.
• It works by removing the hard coding of functions in

a class.
– Instead, we provide objects that can have different

versions of a function available.
• Instead of writing code, we instead invoke a set

method of the object we were provided.

Title of Topic Topic 1 - 1.18

The Strategy Pattern

• Imagine the following situation.
– You are developing a simple role-playing game where

players can create one of a range of different kinds of
characters.

• Each can attack, defend, and cast spells.
– However, different things can happen depending on

what character you are.
• All of the capabilities of each character class are

accessed in the same way, but have different
effects.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 7

Title of Topic Topic 1 - 1.19

The Strategy Pattern

• Wizards can
– Attack and cast spells, but can’t defend.

• Assassins can
– Attack and defend, but can’t cast spells

• Rogues can
– Attack and defend, but can’t cast spells

• Witches can
– Defend and cast spells, but can’t attack

Title of Topic Topic 1 - 1.20

The Strategy Pattern

• Each class action is either identical to the others, or
slightly different.

– Everyone defends the same, but witches cast different spells
to wizards.

• How do you handle this?
– Inheritance?

• Only works in limited circumstances.
– Abstract classes and Interfaces

• Much duplication across classes.
– A combination

• Can be highly complex and difficult to modify
• Something else?

• A behavioural pattern, perhaps.

Title of Topic Topic 1 - 1.21

The Strategy Pattern

public class CharacterType {
private AttackAction myAttack;
private DefendAction myDefend;
private SpellsAction mySpell;

public CharacterType (AttackAction a, DefendAction d, SpellsAction s) {
myAttack = a;
myDefend = d;
mySpell = s;

}

pubic performAttack() {
myAttack.doAttack();

}

public performDefence() {
myDefend.doDefence();

}

public performSpell() {
mySpell.castSpell();

}
}

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 8

Title of Topic Topic 1 - 1.22

The Strategy Pattern

public class Rogue extends CharacterType() {
public Rogue() {

super (new StealthAttack(), new DodgeDefence(), null);
}

}

public class Wizard extends CharacterType() {
public Wizard() {

super (new StaffAttack(), null, new DefendSpell());
}

}

public class Assassin extends CharacterType() {
public Assassin() {

super (new DaggerAttack(), new DodgeDefence(), null);
}

}

public class Witch extends CharacterType() {
public Witch() {

super (null, new ParryDefence(), new AttackSpell());
}

}

Title of Topic Topic 1 - 1.23

The Strategy Pattern

• Structurally, the strategy pattern allows the
developer to resolve several systemic problems in
single inheritance languages.

– C# and Java
• At the cost of (often considerable) obfuscation of

code, you gain exceptional control over the
structure of objects.

– The easiest way of thinking about it is that you have
functions that can be swapped in and out as needed.

Title of Topic Topic 1 - 1.24

The Strategy Pattern

• This benefit extends beyond compile time.
– You can actually ‘hot swap’ methods if needed.
– That in itself is a tremendous benefit.

• Much as with the factory, this allows us to simplify
the logic of the programs that we write.

– It also maps neatly onto a well defined state machine
• We’ll see an example of this in the next lecture.

• We will also see it being used when we implement
the design of the case study we saw previously.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 9

Title of Topic Topic 1 - 1.25

The Flyweight

• Object oriented programming languages provide
fine-grained control over data and behaviours.

– But that flexibility comes at a cost.
– Objects are expensive to create and sometimes use up

more memory than they need.
• The Flyweight creational pattern is used to reduce

the memory and instantiation cost when dealing
with large numbers of finely-grained objects.

– It does this by sharing state whenever possible.

Title of Topic Topic 1 - 1.26

Scenario

• Imagine a word processor.
– They’re pretty flexible. You can store decoration detail on

any character in the text.
• How is this done?

– You could represent each character as an object.
– You could have each character contain its own font object…
– … but that’s quite a memory overhead.

• It would be much better if instead of holding a large font
object, we held only a reference to a font object.

Title of Topic Topic 1 - 1.27

The Flyweight

• The Flyweight pattern comes in to reduce the state
requirements here.

– It maintains a cache of previously utilized configurations or
styles.

– Each character is given a reference to a configuration object.
– When a configuration is applied, we check the cache to see if

it exists.
• If it doesn’t, it creates one and add it to the cache.

• The Flyweight dramatically reduces the memory
footprint of an object.

– We have thousands of small objects rather than thousands of
large objects.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 10

Title of Topic Topic 1 - 1.28

Before and After

public class MyCharacterBefore {
char letter;
Font myFont;

void applyDecoration (string font, int size);
myFont = new Font (font, size);

}
}

public class MyCharacterAfter {
char letter;
Font myFont;

void applyDecoration (string font, int size);
myFont = FlyweightCache.getFont (font, size);

}
}

Title of Topic Topic 1 - 1.29

Implementing a Flyweight

• The flyweight patterns makes no implementation
assumptions.

– A reasonably good way to do it is through a hash map
or other collection.

• The principle is the same as basic caching
– When a request is made, check the cache.
– If it’s there, return it.
– If it’s not, create it and put it in the cache and return the

new instance.

Title of Topic Topic 1 - 1.30

Limitations of the Flyweight Pattern

• Flyweight is only an appropriate design pattern
when object references have no context.

– As in, it doesn’t matter to what they are being applied.
• A font object is a good example.

– It doesn’t matter if it’s being applied to a number, a
character, or a special symbol.

• A customer object is a bad example.
– Each customer is unique.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 11

Title of Topic Topic 1 - 1.31

Conclusions

• The MVC design patterns is used to separate out
parts of an application.

– This simplifies development and makes maintainance
easier.

• The facade is used to simplify complex object
relationships.

• The strategy pattern is used to implement ‘hot
swapping’ functionality.

• The flyweight pattern is used to reduce memory
overhead.

Topic 9 – Design Patterns (2)

Any Questions?

