
Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 1

© NCC Education Limited

Analysis, Design and Implementation
Topic 11:
Redesign and Implementation

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:
• A redesign of the previous case study
• Assessment of design patterns
• Implementation implications

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:
• Follow through the process of applying design

patterns.
• Implement a solution from a design.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 2

Title of Topic Topic 1 - 1.4

Introduction

• In topic six, we worked through a design case study
for a vehicle management service.

• In this topic, we are going to look at issues of
implementation that go with the scenario.

• We have a number of new tools in our toolkit.
– These are our design patterns.

• We should examine each of the things our system
will have to do, and identify if we need to adjust our
design to accommodate.

Title of Topic Topic 1 - 1.5

Refactoring

• Refactoring is the process of improving things that
already exist.

– We’ll talk more about this in the next topic.
• We want to refactor our design so that it is as well

engineered as it possibly can be.
– This is part of the iterative nature of analysis and

design.
• This process falls a little between design and

implementation.
– We need to know about our implementation context.

Title of Topic Topic 1 - 1.6

Our Design so Far - Classes

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 3

Title of Topic Topic 1 - 1.7

Assessing the Design

• Our first step is to look at where we can refactor
our class diagram in light of what we now know
about high quality software.

– Assess for coupling and cohesion
– Apply design patterns in light of requirements.

• Our system is data coupled for the most part, but
not heavily so.

– That’s good, but it perhaps it could be better.
– That will require some redesign.

Title of Topic Topic 1 - 1.8

Assessing the Design

• Although we do not have methods and attributes
defined, we can be reasonably certain cohesion is
high.

– Each class has a narrowly defined responsibility.
– The existence of classes like Payroll and Garage show

that there is a proper separation between ‘representing
a unit’ and ‘representing the collection of units’

• We may want to reconsider the class diagram in
light of designing for software components.

Title of Topic Topic 1 - 1.9

Redesigning

• Redesigning is not a scientific process.
– There is no right answer.

• Although there are plenty of wrong answers.

• Opinions will vary on how to approach a particular
redesign

– Everything involves trade-offs.
• Even choosing to use a design pattern is a trade

off.
– Extra flexibility versus an increased class count and all

that is associated.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 4

Title of Topic Topic 1 - 1.10

Component Design

• Software component design would require us to
break this system up into three parts.

– Vehicle Management
– Staff management
– Customer management

• Each of these would be linked into the Organisation
class.

– We could usefully use a Facade here to implement our
black box.

• Is this good design?

Title of Topic Topic 1 - 1.11

Component Design

Component design
here introduces three
new classes, and a
large amount of
additional coupling.
Our three new
classes have low
cohesion.

Not appropriate for
this project.

Title of Topic Topic 1 - 1.12

Design Patterns

• Component design introduces more problems than
it solves in this example.

– It comes into its own when discussing much larger
projects.

• What about our design patterns?
• Are any appropriate here?
• Starting from our original design, we can start to

look at the functionality we have identified and
determine where they are appropriate.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 5

Title of Topic Topic 1 - 1.13

The Model View Controller

• The MVC architecture is one that we should always be
looking to use.

– In our case, all we have at the moment is our model.
• However, we have also been told we must implement

front-ends in both desktop and web form.
– Thus, we need to expand our system a bit to include this.

• These new classes will be two separate view/controller
classes.

– They do the same thing, just in different ways.

Title of Topic Topic 1 - 1.14

The Model View Controller

How do the View/Controller classes interact with the
model?

We’d want to expose a facade from our model to permit
this.

Title of Topic Topic 1 - 1.15

The Facade

• When creating a black box component, we must
hide implementation details.

• Otherwise, parts of the system become structurally
dependent.

• We can do this in our model behind a facade.
• Note that while the Organisation class ties together all

of our system, it’s not a facade.
• The roles performed by the classes are different.

• Organisation ties things together.
• The Facade simplifies the API and creates an interface.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 6

Title of Topic Topic 1 - 1.16

Modified Design

We gain our facade
as an entry point
and exposed
interface to our
model.

It’s a highly coupled
class with low
cohesion, but that is
the cost we must
pay,

Title of Topic Topic 1 - 1.17

The Factory Design Pattern

• We are presumably going to be creating a number
of jobs as we go along.

• We perhaps want to create a job factory that does this.
• Creates the job based on the data we are given
• Assigns it to the customer

• Likewise for vehicles.
• Create vehicle objects using the details we give them.

• We should consider a factory whenever we are
creating many instances of an object with complex
configuration.

Title of Topic Topic 1 - 1.18

The Factory Design Pattern

There is no need
for our factories to
be complex.

We can have
them as classes
with static factory
methods if we
desire.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 7

Title of Topic Topic 1 - 1.19

The Strategy Pattern

• We don’t have a lot of need here for implementing
a strategy pattern.

• Not all patterns are useful everywhere.
• We could use a strategy pattern to create a flexible

link between the logic for hiring a vehicle and hiring
a driver.

• We must consider what we would really gain from this
versus the cost.

• It is perhaps not suitable in this project.

Title of Topic Topic 1 - 1.20

The Flyweight Pattern

• Most of the objects we create have context to go
with their state.

• There is a difference between Vehicle 1 and Vehicle 2,
in that they will be assigned to different drivers and jobs.

• Flyweight objects are useful only if they are
identical in all respects and free of context.

• The flyweight has no appropriate role in our project.
• Thus, we don’t include it.

Title of Topic Topic 1 - 1.21

The Observer Pattern

• The Observer pattern has a role in most programs.
– It lets us implement call back coupling.

• However, the benefit gained from this is often not
worth the cost of increased object and class
complexity.

• We can profitably implement this as the primary
mechanism for communication between our model
and the facade however.

• And we should do this to remove structural
dependencies.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 8

Title of Topic Topic 1 - 1.22

The Observer Pattern

Here we add in an
interface class, and
have the front-end
classes implement
it.

In this way, we have
obtained the loosest
coupling between
the model and the
view/controller.

Title of Topic Topic 1 - 1.23

Implementation

• We now have a class diagram that we can convert
into code.

– We know what role each of the classes are going to
play.

– We know where we are using design patterns to their
best effect.

• Converting an activity diagram into code is the
same process as turning pseudocode into code.

– We have discussed this process already.
• Our class diagram is a little more complex.

Title of Topic Topic 1 - 1.24

Implementation

• Our class diagram omits attributes and operations.
– We have already discussed how these should be

handled.
– Fleshing out the diagram with these is left as an

exercise for students.
• Our first step in implementing a class diagram is to

sketch out the classes in code.
• We start with classes that have no dependencies.

– So that we can compile as we go along.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 9

Title of Topic Topic 1 - 1.25

Vehicle Implementation

public class Vehicle {
private double rate;
private int capacity;

public void setRate(double val) {
rate = val;

}

public double getRate() {
return rate;

}

public void setCapacity (int val) {
capacity = val;

}

public int getCapacity() {
return capacity;

}
}

Title of Topic Topic 1 - 1.26

Implementation

• Implementing a base class like this allows us to
then implement dependent classes.

– Such as the VehicleFactory.
• Our factory is going to take in the parts of the

vehicle that must be configured, and then spit out a
configured object.

– This will be done as a static method so as to avoid the
need to instantiate an object.

Title of Topic Topic 1 - 1.27

Implementation of Factory (1)

public class VehicleFactory {
private static final int TYPE_TRANSIT = 0;
private static final int TYPE_COMBO = 1;
private static final int TYPE_BOX = 2;

public static Vehicle getVehicle (int type) {
return null;

}
}

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 10

Title of Topic Topic 1 - 1.28

Implementation of Factory (2)

public static Vehicle getVehicle (int type) {
double rate = 0.0;
int capacity = 0;
Vehicle v = new Vehicle();

switch (type) {
case TYPE_TRANSIT:

rate = 2.0;
capacity = 2000;

break;
case TYPE_COMBO:

rate = 1.5;
capacity = 1000;

break;
case TYPE_BOX:

rate = 3.0;
capacity = 5000;

break;
default:

return null;
}
v.setRate (rate);
v.setCapacity (capacity);
return v;

}

Title of Topic Topic 1 - 1.29

Implementation

• Then, we can implement the class that requires the
existence of our factory.

• Our garage
• We need to decide on how the garage is going to

store vehicles.
• We’ll use a Dictionary for the this.

• Our Dictionary will store vehicle objects by licence
plate.

• This give us an easy way to query specific vehicles.

Title of Topic Topic 1 - 1.30

Garage Implementation

public class Garage {

Dictionary<String,Vehicle> myVehicles;

public Garage() {
myVehicles = new Dictionary<String,Vehicle>();

}

public void addVehicle (String licence, int type) {
Vehicle v = VehicleFactory.getVehicle (type);

myVehicles.Add (licence, v);
}

}

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 11

Title of Topic Topic 1 - 1.31

Implementation

• Implementation progresses like this.
– Create base classes

• Implement their logic.
– Create dependent classes

• Link them to the base classes.

• You do not need to implement all functionality at
once.

– You can approach the development incrementally.
– We still need to implement functionality for removing

vehicles, for example.

Title of Topic Topic 1 - 1.32

Conclusion

• Analysis and Design is an iterative process.
– We need to revisit our designs as we learn more about

how to implement things.
– We need to revisit our analysis as we reveal problems

with our design.
• Design patterns can be useful.

– But not in all situations.
• We must always be mindful of the cost of the

benefits they give us.

Topic 11 – Redesign and Implementation

Any Questions?

