
Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 1

© NCC Education Limited

Analysis, Design and Implementation
Topic 6:
Dynamic Analysis and Design

Title of Topic Topic 1 - 1.2

Scope and Coverage

This topic will cover:
• Activity Diagrams
• Sequence Diagrams
• Converting dynamic models into code

Title of Topic Topic 1 - 1.3

Learning Outcomes

By the end of this topic students will be able to:
• Make use of activity diagrams
• Turn activity diagrams into code
• Develop sequence diagrams

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 2

Title of Topic Topic 1 - 1.4

Introduction

• In the last lecture we looked at building static
models of the systems we are to build.

– The class diagram focuses on how things fit together.
• Today, we are going to look at an aspect of the

dynamic design.
– How a system should respond to users and evolve over

time.
• This involves two new diagram notations.

– Sequence diagrams
– Activity diagrams

Title of Topic Topic 1 - 1.5

Activity Diagrams

• Activity diagrams are known as workflow
diagrams.

– They are much like flow-charts, except more structured.
• Activity diagrams are used to describe the full

process behind an internal process or a user
request.

– They describe the logic of the operations that are shown
on class diagrams.

• They are constructed of a number of notational
elements.

Title of Topic Topic 1 - 1.6

Notational Elements

Element Description
Swim Lane Used to indicate which actors or objects are responsible for

the action. They are indicated by a series of lines
partitioning the diagram.

Initial Node The starting point for the diagram. This is represented by a
single filled circle.

Activity Final
Node

The termination point for the activities. There may be
several of these in a diagram. This is a filled circle
surrounded by a border.

Flow The flow represents the order in which activities are
performed. Indicated by arrows.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 3

Title of Topic Topic 1 - 1.7

Notational Elements

Element Description
Fork A fork indicates parallel processing – activities that can be undertaken at

the same time. A fork is indicated by a thick bar where one flow enters
and multiple flows leave.

Join A join indicates the end of parallel processing, and is indicated by a thick
bar where multiple flows enter and only one leaves.

Decision A decision represent a choice that must be taken, and is represented as
a diamond with a single flow entering and one or more flows leaving.

Activity An activity is the baseline step in an activity diagram, and is represented
by a rounded oval. An activity is any logically discreet action that must
be taken throughout the course of the activity.

Title of Topic Topic 1 - 1.8

Activity Diagram

Title of Topic Topic 1 - 1.9

Activity Diagrams

• Activity diagrams are mostly used for two purposes.
– Outlining the high level activity in a system.

• As with our example diagram.
– Formally representing algorithms.

• Each activity becomes a line of code

• In the latter case, activity diagrams serve as a
consistent notation for representing logical
processes.

– Like pseudo-code, but graphical.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 4

Title of Topic Topic 1 - 1.10

Finding a Book

Title of Topic Topic 1 - 1.11

Creating an Activity Diagram

• Creating an activity diagram is much like writing
computer code.

– There is no ‘right’ way, but plenty of wrong ways.
• Activity diagrams represent the flow of

communication through a system.
– It is important that each use-case in your use-case

diagram has an activity diagram representation.
• Activity diagrams can be profitably developed in

two parts.

Title of Topic Topic 1 - 1.12

Creating an Activity Diagram

• Analysis
– Understand what the current system is doing
– Understand the flow of communication for each distinct

use-case in the current system.
• Design

– Improve the existing system
• Improve efficiency
• Remove bottlenecks
• Remove redundancies

– Diagram your improved workflows.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 5

Title of Topic Topic 1 - 1.13

Understanding the System

• As with constructing a class diagram, the important
thing is to understand your brief.

• Diagramming the workflow of a process will ensure
that you understand each of the steps.

• Having someone else try to follow your diagram will
ensure that you haven’t left anything out.

• The NLA processing that you may have done to
outline the class diagram will assist in developing
your activity diagrams.

Title of Topic Topic 1 - 1.14

Understanding the System

• Your NLA will reveal:
– Behaviours
– Classes

• Your use-case diagrams will reveal:
– Processes
– Actors

• The development of one diagram should be
informing the development of others.

– UML is an integrated system for developing diagrams.

Title of Topic Topic 1 - 1.15

Developing an Activity Diagram

• A useful first step is to outline a process in
structured English or pseudo-code.

• You do not need all of the detail to begin with.
– As with class diagrams, we can continually refine these

as we go along.
• Once you have a structured description of the

process, construct the diagram from that
description.

• Granularity can be difficult here.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 6

Title of Topic Topic 1 - 1.16

Developing an Activity Diagram

• The process for constructing your description is as
follows:

– Identify the process to be documented.
– Limit the scope of the process only to the relevant

aspects.
– Methodically document each step of the process.

• When a decision is called for, precisely enumerate all options.
• When a repetition is called for, precisely enumerate the

termination condition.
• When an activity is called for, break it down until each box

represents one distinct step of the system.

Title of Topic Topic 1 - 1.17

Implementation

• Activity diagrams lend themselves easily to code.
– It is simply a case of translating activities into code

statements.
• Activity diagrams are focused at the level of the

method.
– They don’t show big picture detail of how things interact.

• Consider the example activity diagram that looks to
see if a book is currently available, we can convert
that easily into an suitable OO language.

Title of Topic Topic 1 - 1.18

Implementation

• As with any of these diagrams, they represent a
high level, language independent view.

– We need to make calls on implementation as we go
along.

• Our activity diagrams don’t explicitly mention loops,
so we need to decide for ourselves how to
implement the looping behaviour.

– We’ll do ours with a for loop.
• We begin by writing the logic out in full, and then

condense.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 7

Title of Topic Topic 1 - 1.19

Implementation – Rough

Book findBook (String isbn) {
int counter;
Book tmp;
String currentIsbn;

counter = 0;

tmp = allBooks[counter];

currentIsbn = tmp.getISBN();

if (currentIsbn.Equals (isbn)) {
return tmp;

}

counter += 1;

if (counter < allBooks.Count) {
// Loop back to line 8

}

return null;
}

Title of Topic Topic 1 - 1.20

Implementation - Refined

Book findBook (String isbn) {
int counter;
Book tmp;
String currentIsbn;

counter = 0;

for (counter = 0; counter < allBooks.Count; counter += 1) {
tmp = allBooks[counter];

currentIsbn = tmp.getISBN();

if (currentIsbn.Equals(isbn)) {
return tmp;

}
}

return null;
}

Title of Topic Topic 1 - 1.21

Implementation

• Implementation at this level of abstraction is often,
at least in part, an all or nothing affair.

– We can’t implement the findBook method until we
implement the getISBN method.

• We develop such programs from the fundamentals
upwards.

– Accessor methods and properties are implemented first
– Those methods that rely only on these methods are

implemented next
– Those methods that rely on other methods are done last.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 8

Title of Topic Topic 1 - 1.22

Sequence Diagrams

• The next diagram notation we will discuss is that of
the sequence diagram.

– This shows the order in which methods are invoked in a
system.

– It shows the scope, or lifetime, of objects.
• Sequence diagrams are useful for developers to

see the big picture of how things interact.
– It views the operation at a higher level of abstraction

than an activity diagram.

Title of Topic Topic 1 - 1.23

Sequence Diagram Notation

• Sequence diagrams consist of a number of
lifelines.

– These are boxes that represent the roles and lifetimes
of objects involved in an interaction.

• Each of these life-lines will produce messages.
– These are labelled arrows that show the name of

methods invoked and their parameters.
• Return messages are drawn with the type of the

parameter, and a dotted arrow.

Title of Topic Topic 1 - 1.24

Sequence Diagram

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 9

Title of Topic Topic 1 - 1.25

Guards and Alternates

• The flow of logic through a sequence diagram is
often dependent on the state of returned values.

– Card validity
– Book availability

• We represent these in a sequence diagram through
the use of a frame.

– This allows us to provide if/else strutures in our
diagrams.

– We place a guard condition on the frame which
determines whether a frame should be executed.,

Title of Topic Topic 1 - 1.26

Guards and Alternates

Title of Topic Topic 1 - 1.27

Objects and Classes

• In a sequence diagram, the boxes at the top of a
lifeline represent objects.

– Not classes.
• As such, they should properly be named and typed.

– Names are of secondary importance unless we can be
sure of a particular context.

• We name them anyway so that we can distinguish
between instances of a class and potentially static
operations (in which case, we have the type only).

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 10

Title of Topic Topic 1 - 1.28

Sequence Diagrams

• Sequence diagrams are not usually implemented
directly.

– They serve to help you find logical or architectural
inconsistencies before it becomes time to develop the
program.

• They also show dependencies of objects and
methods.

– You can see what activities are going to be involved in a
process by examining the sequence diagram.

Title of Topic Topic 1 - 1.29

The Role of a Sequence Diagram

• Activity diagrams should represent a code view of a
system.

• Sequence diagrams should represent a higher
level view of interactions.

– Otherwise, you gain nothing from them that you don’t
gain from looking at the source code or the activity
diagrams.

• There is no need for a sequence diagram to be
detail heavy.

– Broad strokes allow you to get the most out of them.

Title of Topic Topic 1 - 1.30

The Role of a Sequence Diagram

• Sequence diagrams also serve as a way to co-
ordinate interfaces between multiple developers.

– If everyone has access to the sequence diagram, they
can see what methods their classes need to expose and
what data they are expected to return.

• Sequence diagrams are a useful part of your
analysis and design toolkit, but not necessarily a
part that will inform the implementation of your
systems.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 11

Title of Topic Topic 1 - 1.31

Conclusion

• Dynamic modelling represents the state of the
system as it changes over time.

– Or as it reacts to user input.
• Activity diagrams serve as a template for

implementing code.
– They are a low-level view of how processes and objects

interact.
• Sequence diagrams are a high level planning and

design tool.
– They don’t get implemented directly.

Topic 6 – Dynamic Analysis and Design

Any Questions?

