
Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 1

© NCC Education Limited

Analysis, Design and Implementation
Topic :
Agile Object Orientation

Title of Topic Topic 1 - 1.2

Learning Outcomes

By the end of this topic students will be able to:
• Define the benefits of OOAD
• Make use of event decomposition
• Build use-case models
• Appreciate the value of an agile approach to

analysis and design

Title of Topic Topic 1 - 1.3

Scope and Coverage

This lecture will cover:
• The OOAD development process
• An overview of previous methods
• The benefits of OOAD
• The drawbacks to OOAD
• OOAD in an agile world

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 2

Title of Topic Topic 1 - 1.4

Introduction

• In this lecture we are going to address the way in
which the OOAD process is applied.

• We’re also going to talk about what came before a
little.

• OOAD as a process has many benefits.
– And the Object Oriented programs it inspires are the

norm for the industry.
• It also has a number of drawbacks.

– We’ll discuss these too.

Title of Topic Topic 1 - 1.5

In the past...

• In the past, most analysis and design progressed
through the use of two systems.

– Data Centric Modelling languages
– The Waterfall Model

• We touched on this briefly during the first lecture.

• As software systems grew in size and complexity,
these tools ceased to scale up.

• In addition, they were somewhat difficult to change
to adapting circumstances.

Title of Topic Topic 1 - 1.6

Software Complexity

• As the complexity of software increases, these
diagrams became more cumbersome.

• Object oriented analysis and design was
introduced to help simplify the architecture of large,
complex programs.

– An object is a small, self-contained program of its own.
– The system is the interaction of all the objects in a

program.
• This allows for compact representation in diagrams.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 3

Title of Topic Topic 1 - 1.7

Object Orientation

• Object orientation is a progression from the
procedural programming paradigm of earlier
languages.

– Objects add an extra level of modularity on top of the
existing functions permitted.

• Programs written using structured programming
often lacked maintainability.

• Object orientation was developed to address this
deficiency.

Title of Topic Topic 1 - 1.8

Benefits of OOAD

• Object oriented analysis and design has a number
of advantages over other forms of analysis and
design:

– Systems are more effectively decomposed into units
– Good OOAD results in components that are more easily

maintained
– Good OOAD results in components that can be more

easily reused between systems.
– OOAD more naturally models how systems work in

practise.

Title of Topic Topic 1 - 1.9

Drawbacks of OOAD

• There are drawbacks too
– Large systems can have hundreds of classes, and

interactions can be complicated.
– It is very easy to badly design classes.
– Object orientation requires a trade-off between coupling

and cohesion.
• You can’t have it all

– While it more naturally models how systems work, it is
still an unusual way for people to think.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 4

Title of Topic Topic 1 - 1.10

A Simple OOAD Process

• Much of the benefit of OOAD can be obtained
through the use of a five step process.

– Identify the needs of users.
• Documented via use-case diagrams

– Details the steps needed for each of the requirements
• Done through activity diagrams.

– Decompose the requirements for the system.
• Break it down into components via class diagrams

– Define out the interactions
• Bring it all together in a component diagram

– Go back to the start and iterate

Title of Topic Topic 1 - 1.11

A Simple OOAD Process

• Iteration is an important part of OOAD
– You will never get it right the first time
– New requirements and information will be introduced all

the time.
• Incremental analysis and design is simplest

– Don’t try to solve the whole problem at once
– Pick a starting point, and work from that.

• Good design is user centric
– You need to know what the users have to say

Title of Topic Topic 1 - 1.12

Decomposition

• Understanding any complex system is an exercise
in decomposition.

– You must be able to partition the whole into
manageable subsections.

• Abstraction is an important part of this process.
– You need to be able to view the different parts at a

suitable level of granularity.
• Incremental development is the process of

successively refining your abstractions.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 5

Title of Topic Topic 1 - 1.13

The Use-Case Diagram

• The Use-case diagram is an important tool in
managing your abstractions.

– It allows you to represent the broad interactions
between parts of a system.

• It is used to represent the set of functionality that
must be supported for each part.

– Those parts are called actors
• They may be users
• They may be subsystems

Title of Topic Topic 1 - 1.14

The Use-Case Diagram

• Use case diagrams do not show interactions
between actors.

– That is beyond the scope of our analysis and design.
• Actors are represented by stick figures.
• Actions are represented by ovals in which a broad

description of the process is placed.
• A specific interaction is defined as a line which

connects the actor and the action they can perform.

Title of Topic Topic 1 - 1.15

Use Case Diagram Example 1

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 6

Title of Topic Topic 1 - 1.16

Use Case Diagram Example 2

Title of Topic Topic 1 - 1.17

Use Case Diagrams

• Use case diagrams are supposed to show only
broad strokes of interaction.

• However, sometimes we want to specialise a
specific action if it has clearly defined subtasks.

• To do this we create a separate diagram and flesh
out the interaction.

– We can make an interaction have multiple parts,
providing a <<uses>> line to indicate subtasks.

Title of Topic Topic 1 - 1.18

Use Case Diagram Example 3

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 7

Title of Topic Topic 1 - 1.19

Use Case Diagrams

• Note that no order is imposed in use diagrams.
– We handle that in a different, later diagram.

• You can think of this as a high level overview of
your user interface.

– You need to permit ways for people to do all of the
things you’ve indicated on the diagram.

• Generating the use case diagram will be a result of
interaction with the users and the problem
statement.

Title of Topic Topic 1 - 1.20

Use Case Diagrams

• A third special syntax of use case diagram permits
you to indicate that one kind of action derives from
another.

• This is the extends syntax, and is used to
demonstrate both inheritance and polymorphism in
a diagram.

– You won’t have to do this until quite late into the OOAD
process.

Title of Topic Topic 1 - 1.21

Use-Case Diagram Example 4

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 8

Title of Topic Topic 1 - 1.22

Identifying Use Cases

• We can use a technique called event
decomposition to arrive at a list of candidate
events for our system.

– We treat the system as a black box
– We focus on the things that happen to the black box.

• We may end up discarding or combining the events
that we come up with.

– That’s all part of the iterative process.
– What we need to begin with is a starting point.

Title of Topic Topic 1 - 1.23

Identifying Use Cases

• There are three main kinds of event we need to
look at.

– External events
– Temporal events
– State events

• We consider each of these events in relation to the
potential actor.

– This technique is merely a way of focusing our thinking.
– The starting point will still be the problem statement or

the users.

Title of Topic Topic 1 - 1.24

External Events

• External events exist outside the system, and are
usually initiated by a third party outside the scope
of our system.

– For example, the customer of a web page, or the
database administrator.

• We then document all of the potential interactions
that each of these actors may be required to
perform.

– Each of these then becomes a candidate for a use case
diagram.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 9

Title of Topic Topic 1 - 1.25

Example Candidates

Customer List products by category
List products by price
Buy a product
Read reviews of a product
View shopping basket
Update account details

Administrator Add new products
Remove products
Modify products
Modify customer details

Title of Topic Topic 1 - 1.26

Temporal Events

• Temporal events are those that occur as a result of
reaching a particular point in time.

– End of the month, so handle salaries
• Sometimes these events will be triggered by

external entities
– A user may set up an report that should be mailed to

them every week
• We determine temporal events by detailing any

specific deadlines or recurring functionality.

Title of Topic Topic 1 - 1.27

Temporal Events

• Temporal events do not necessarily occur at a fixed
time.

– They may instead occur after time passed.
• Debit the customer’s account ten minutes after they have

purchased an item.

• The occurrence of the timed event is the temporal
aspect.

– Setting the event to occur is often an external event

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 10

Title of Topic Topic 1 - 1.28

State Events

• State events are those that occur when the data in
a system reaches a point where processing is
required.

– When stock drops below a certain amount, email the
procurement department.

• Normally these occur as a result of other events.
– Temporal or state
– A customer buys a product, which adjusts the stock,

which throws up a state event.

Title of Topic Topic 1 - 1.29

Choosing between events

• What we get out of this is a list of candidates.
– They’re not all going to be worthwhile.

• The only ones we care about are those that directly
affect our system.

– We don’t care about the events that lead up to the
interaction, or those that follow them.

• We need to strive for a consistent level of detail
across the events.

– This may involve breaking some out into multiple
events, or combining others.

Title of Topic Topic 1 - 1.30

Agile OOAD

• Use-Case diagrams are a powerful tool for
understanding interactions in a system.

• But first and foremost they are a tool for
communication.

• They’re designed to let people within a team, and
outside a team, share information in an optimal
fashion.

• As such, they should be ‘as detailed as needed’

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 11

Title of Topic Topic 1 - 1.31

Agile OOAD

• Just because a diagram supports a feature, it
doesn’t mean all diagrams need that feature.

• There’s no need to have a diagram that reflects
everything.

• Modern design philosophies stress agility.
– As little documentation as possible
– But all documentation actually mattering

• We’ll address this topic more as we go on.

Title of Topic Topic 1 - 1.32

Conclusion

• OOAD is an evolution from structured analysis and
design.

• It stresses interaction of components rather the
flow of data between algorithms.

• Use-case diagrams are used to represent a high
level view of actor interactions.

• There are many ways to develop use case
diagrams.

– Event decomposition can be a useful technique.

Title of Topic Topic 1 - 1.33

Terminology

• Use Case Diagram
– A diagram used to represent high-level interactions with

a system.
• Event decomposition

– Identifying events that must be represented in the
system through analysis of raised events.

• Actor
– Something that interacts with our system. Can be

external (such as a user), or a subsystem.

Topic X – Topic Title Module Title

V0.0 Visuals Handout – Page 12

Topic 4 – Agile Object Orientation

Any Questions?

