
Python Identifiers
 An identifier is a name given to entities like class, functions, variables, etc.
 It helps to differentiate one entity from another.

Multi-line statement
In Python, end of a statement is marked by a newline character.
But we can make a statement extend over multiple lines with the
line continuation character (\). For example:

a = 1 + 2 + 3 + \
4 + 5 + 6 + \
7 + 8 + 9

Python Comments
Comments are very important while writing a program. It describes what's going
on inside a program so that a person looking at the source code does not have a
hard time figuring it out.

#This is a comment
#print out Hello
print('Hello')

Multi-line comments
If we have comments that extend multiple lines, one way of doing it is to use hash (#)
in the beginning of each line. For example:

#This is a long comment
#and it extends
#to multiple lines

Another way of doing this is to use triple quotes, either ''' or """.

2. Variables And Simple Data Types
==================================
Python Variables

 A variable is a named location used to store data in the memory.
 It is helpful to think of variables as a container that holds data which can be
 changed later throughout programming. For example,

 number = 10

 a, b, c = 5, 3.2, "Hello"

 print (a)
 print (b)
 print (c)

 Create a constant.py

 PI = 3.14
 GRAVITY = 9.8

 Create a main.py

 import constant

 print(constant.PI)
 print(constant.GRAVITY)

 Literals

 Literal is a raw data given in a variable or constant.
 In Python, there are various types of literals they are as follows:

 Numeric Literals
 Numeric Literals are immutable (unchangeable). Numeric literals can belong to 3
 different numerical types Integer, Float and Complex.

 String literals
 A string literal is a sequence of characters surrounded by quotes.
 We can use both single, double or triple quotes for a string. And, a character
 literal is a single character surrounded by single or double quotes.

 strings = "This is Python"
 char = "C"
 multiline_str = """This is a multiline string with more than one line code."""
 unicode = u"\u00dcnic\u00f6de"
 raw_str = r"raw \n string"

 print(strings)
 print(char)
 print(multiline_str)
 print(unicode)
 print(raw_str)

 Literal Collections

 There are four different literal collections List literals, Tuple literals,
 Dict literals, and Set literals.

 fruits = ["apple", "mango", "orange"] #list
 numbers = (1, 2, 3) #tuple
 alphabets = {'a':'apple', 'b':'ball', 'c':'cat'} #dictionary
 vowels = {'a', 'e', 'i' , 'o', 'u'} #set

 print(fruits)
 print(numbers)
 print(alphabets)
 print(vowels)

print(1,2,3,4,sep='*')
Output: 1*2*3*4

print(1,2,3,4,sep='#',end='&')
Output: 1#2#3#4&

print('I love {0} and {1}'.format('bread','butter'))
Output: I love bread and butter

print('I love {1} and {0}'.format('bread','butter'))
Output: I love butter and bread

strings

Python String

 What is String in Python?

 A string is a sequence of characters.
 A character is simply a symbol. For example, the English language has 26 characters.

 # all of the following are equivalent
 my_string = 'Hello'
 print(my_string)

 my_string = "Hello"
 print(my_string)

 my_string = '''Hello'''
 print(my_string)

 # triple quotes string can extend multiple lines
 my_string = """Hello, welcome to
 the world of Python"""
 print(my_string)

 # using triple quotes
 print('''He said, "What's there?"''')

 # escaping single quotes
 print('He said, "What\'s there?"')

 # escaping double quotes
 print("He said, \"What's there?\"")

 Escape Sequence Description
 \newline Backslash and newline ignored
 \\ Backslash
 \' Single quote
 \" Double quote
 \a

 ASCII Bell
 \b ASCII Backspace
 \f ASCII Formfeed
 \n ASCII Linefeed
 \r ASCII Carriage Return
 \t ASCII Horizontal Tab
 \v ASCII Vertical Tab
 \ooo Character with octal value ooo
 \xHH Character with hexadecimal value HH

 # default(implicit) order
 default_order = "{}, {} and {}".format('John','Bill','Sean')
 print('\n--- Default Order ---')
 print(default_order)

 # order using positional argument
 positional_order = "{1}, {0} and {2}".format('John','Bill','Sean')
 print('\n--- Positional Order ---')
 print(positional_order)

 # order using keyword argument
 keyword_order = "{s}, {b} and {j}".format(j='John',b='Bill',s='Sean')
 print('\n--- Keyword Order ---')
 print(keyword_order)

name = "nazmul haque"
print(name.title())
print(name.upper())
print(name.lower())

first_name = "nazmul"
last_name = "haque"
u full_name = first_name + " " + last_name
print(full_name)

print("Hello, " + full_name.title() + "!")
#or
message = "Hello, " + full_name.title() + "!"

print(message)

favorite_language = 'python '
>>> favorite_language
'python '
>>> favorite_language.rstrip()
'python'
>>> favorite_language
'python '

favorite_language = ' python '
>>> favorite_language.rstrip()
' python'
>>> favorite_language.lstrip()
'python '
>>> favorite_language.strip()
'python'

numbers

Integers
You can add (+), subtract (-), multiply (*), and divide (/) integers in Python.

Floats
Python calls any number with a decimal point a float.

age = 23
message = "Happy " + str(age) + "rd Birthday!"

Comments
--
Comments are an extremely useful feature in most programming languages.

Say hello to everyone.
print("Hello Python people!")

